On long range dependence in global surface temperature series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

Michael E. Mann

ABSTRACT

Long Range Dependence (LRD) scaling behavior has been argued to characterize long-term surface temperature time series. LRD is typically measured by the so-called “Hurst” coefficient, “H”. Using synthetic temperature time series generated by a simple climate model with known physics, I demonstrate that the values of H obtained for observational temperature time series can be understood in terms of the linear response to past estimated natural and anthropogenic external radiative forcing combined with the effects of random white noise weather forcing. The precise value of H is seen to depend on the particular noise realization. The overall distribution obtained over an ensemble of noise realizations is seen to be a function of the relative amplitude of external forcing and internal stochastic variability and additionally in climate “proxy” records, the amount of non-climatic noise present. There is no obvious reason to appeal to more exotic physics for an explanation of the apparent scaling behavior in observed temperature data. More... »

PAGES

267-276

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-010-9998-z

DOI

http://dx.doi.org/10.1007/s10584-010-9998-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040575334


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Meteorology and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mann", 
        "givenName": "Michael E.", 
        "id": "sg:person.01066704101.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066704101.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2005jd006548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000063736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344324a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000092146", 
          "https://doi.org/10.1038/344324a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605064103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004748955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl017666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005115223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009137936", 
          "https://doi.org/10.1007/s003820000075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl034716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012724430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2006.00195.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012957138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98gl01908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014449289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024569108", 
          "https://doi.org/10.1007/bf00139727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024569108", 
          "https://doi.org/10.1007/bf00139727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0068-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025155550", 
          "https://doi.org/10.1007/s10584-011-0068-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.046133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029457166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.046133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029457166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jd008272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029880826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1623/hysj.53.4.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033383231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2528.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034245479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rg019i001p00091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034253139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00142586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038004731", 
          "https://doi.org/10.1007/bf00142586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00142586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038004731", 
          "https://doi.org/10.1007/bf00142586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-985x.2006.00443.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039481878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0805721105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040246940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3543.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042038148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl038771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl038771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.108501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.108501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5477.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062570266"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "Long Range Dependence (LRD) scaling behavior has been argued to characterize long-term surface temperature time series. LRD is typically measured by the so-called \u201cHurst\u201d coefficient, \u201cH\u201d. Using synthetic temperature time series generated by a simple climate model with known physics, I demonstrate that the values of H obtained for observational temperature time series can be understood in terms of the linear response to past estimated natural and anthropogenic external radiative forcing combined with the effects of random white noise weather forcing. The precise value of H is seen to depend on the particular noise realization. The overall distribution obtained over an ensemble of noise realizations is seen to be a function of the relative amplitude of external forcing and internal stochastic variability and additionally in climate \u201cproxy\u201d records, the amount of non-climatic noise present. There is no obvious reason to appeal to more exotic physics for an explanation of the apparent scaling behavior in observed temperature data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10584-010-9998-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "107"
      }
    ], 
    "name": "On long range dependence in global surface temperature series", 
    "pagination": "267-276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c149508152784b867b1058958c29956dd36b6ab45da5440b05e2eab49e381e3d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-010-9998-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040575334"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-010-9998-z", 
      "https://app.dimensions.ai/details/publication/pub.1040575334"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10584-010-9998-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-010-9998-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-010-9998-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-010-9998-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-010-9998-z'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-010-9998-z schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N6d4b426f9b3a44ea8c883c2695a3b081
4 schema:citation sg:pub.10.1007/bf00139727
5 sg:pub.10.1007/bf00142586
6 sg:pub.10.1007/s003820000075
7 sg:pub.10.1007/s10584-011-0068-y
8 sg:pub.10.1038/344324a0
9 https://doi.org/10.1029/2003gl017666
10 https://doi.org/10.1029/2005jd006548
11 https://doi.org/10.1029/2006jd008272
12 https://doi.org/10.1029/2008gl034716
13 https://doi.org/10.1029/2009gl038771
14 https://doi.org/10.1029/98gl01908
15 https://doi.org/10.1029/rg019i001p00091
16 https://doi.org/10.1073/pnas.0605064103
17 https://doi.org/10.1073/pnas.0805721105
18 https://doi.org/10.1103/physreve.68.046133
19 https://doi.org/10.1103/physrevlett.90.108501
20 https://doi.org/10.1111/j.1467-985x.2006.00443.x
21 https://doi.org/10.1111/j.1600-0870.2006.00195.x
22 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
23 https://doi.org/10.1126/science.289.5477.270
24 https://doi.org/10.1175/2008jcli2528.1
25 https://doi.org/10.1175/jcli3543.1
26 https://doi.org/10.1623/hysj.53.4.671
27 schema:datePublished 2011-08
28 schema:datePublishedReg 2011-08-01
29 schema:description Long Range Dependence (LRD) scaling behavior has been argued to characterize long-term surface temperature time series. LRD is typically measured by the so-called “Hurst” coefficient, “H”. Using synthetic temperature time series generated by a simple climate model with known physics, I demonstrate that the values of H obtained for observational temperature time series can be understood in terms of the linear response to past estimated natural and anthropogenic external radiative forcing combined with the effects of random white noise weather forcing. The precise value of H is seen to depend on the particular noise realization. The overall distribution obtained over an ensemble of noise realizations is seen to be a function of the relative amplitude of external forcing and internal stochastic variability and additionally in climate “proxy” records, the amount of non-climatic noise present. There is no obvious reason to appeal to more exotic physics for an explanation of the apparent scaling behavior in observed temperature data.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N53b66bdf82574edca2cbc9a7304ae20c
34 Nf6411d14200b4ee98098f0046542f978
35 sg:journal.1028211
36 schema:name On long range dependence in global surface temperature series
37 schema:pagination 267-276
38 schema:productId N1e50d245dee44fcd978510fdee512557
39 N5a03afed73cb44fbbfa5a22a748d92d8
40 Nece41f96232e40ae9f9892a5c1a111f6
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040575334
42 https://doi.org/10.1007/s10584-010-9998-z
43 schema:sdDatePublished 2019-04-10T20:40
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N1a87ba90aeef4a4393bbe1f639dd6ef2
46 schema:url http://link.springer.com/10.1007/s10584-010-9998-z
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N1a87ba90aeef4a4393bbe1f639dd6ef2 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N1e50d245dee44fcd978510fdee512557 schema:name doi
53 schema:value 10.1007/s10584-010-9998-z
54 rdf:type schema:PropertyValue
55 N53b66bdf82574edca2cbc9a7304ae20c schema:volumeNumber 107
56 rdf:type schema:PublicationVolume
57 N5a03afed73cb44fbbfa5a22a748d92d8 schema:name readcube_id
58 schema:value c149508152784b867b1058958c29956dd36b6ab45da5440b05e2eab49e381e3d
59 rdf:type schema:PropertyValue
60 N6d4b426f9b3a44ea8c883c2695a3b081 rdf:first sg:person.01066704101.44
61 rdf:rest rdf:nil
62 Nece41f96232e40ae9f9892a5c1a111f6 schema:name dimensions_id
63 schema:value pub.1040575334
64 rdf:type schema:PropertyValue
65 Nf6411d14200b4ee98098f0046542f978 schema:issueNumber 3-4
66 rdf:type schema:PublicationIssue
67 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
68 schema:name Earth Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
71 schema:name Physical Geography and Environmental Geoscience
72 rdf:type schema:DefinedTerm
73 sg:journal.1028211 schema:issn 0165-0009
74 1573-1480
75 schema:name Climatic Change
76 rdf:type schema:Periodical
77 sg:person.01066704101.44 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
78 schema:familyName Mann
79 schema:givenName Michael E.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066704101.44
81 rdf:type schema:Person
82 sg:pub.10.1007/bf00139727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024569108
83 https://doi.org/10.1007/bf00139727
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf00142586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038004731
86 https://doi.org/10.1007/bf00142586
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s003820000075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009137936
89 https://doi.org/10.1007/s003820000075
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s10584-011-0068-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025155550
92 https://doi.org/10.1007/s10584-011-0068-y
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/344324a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092146
95 https://doi.org/10.1038/344324a0
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1029/2003gl017666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005115223
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1029/2005jd006548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000063736
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1029/2006jd008272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029880826
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1029/2008gl034716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012724430
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1029/2009gl038771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618288
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/98gl01908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014449289
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1029/rg019i001p00091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034253139
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1073/pnas.0605064103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004748955
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.0805721105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040246940
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreve.68.046133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029457166
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.90.108501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826443
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1111/j.1467-985x.2006.00443.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039481878
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1600-0870.2006.00195.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012957138
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010935631
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1126/science.289.5477.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570266
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1175/2008jcli2528.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034245479
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1175/jcli3543.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042038148
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1623/hysj.53.4.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033383231
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
134 schema:name Department of Meteorology and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...