Modelling daily temperature extremes: recent climate and future changes over Europe View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03-17

AUTHORS

Erik Kjellström, Lars Bärring, Daniela Jacob, Richard Jones, Geert Lenderink, Christoph Schär

ABSTRACT

Probability distributions of daily maximum and minimum temperatures in a suite of ten RCMs are investigated for (1) biases compared to observations in the present day climate and (2) climate change signals compared to the simulated present day climate. The simulated inter-model differences and climate changes are also compared to the observed natural variability as reflected in some very long instrumental records. All models have been forced with driving conditions from the same global model and run for both a control period and a future scenario period following the A2 emission scenario from IPCC. We find that the bias in the fifth percentile of daily minimum temperatures in winter and at the 95th percentile of daily maximum temperature during summer is smaller than 3 (±5°C) when averaged over most (all) European sub-regions. The simulated changes in extreme temperatures both in summer and winter are larger than changes in the median for large areas. Differences between models are larger for the extremes than for mean temperatures. A comparison with historical data shows that the spread in model predicted changes in extreme temperatures is larger than the natural variability during the last centuries. More... »

PAGES

249-265

References to SciGraph publications

  • 2007-03-17. Circulation statistics and climate change in Central Europe: PRUDENCE simulations and observations in CLIMATIC CHANGE
  • 2002-04. Trends of Extreme Temperatures in Europe and China Based on Daily Observations in CLIMATIC CHANGE
  • 2007-03-22. Future extreme events in European climate: an exploration of regional climate model projections in CLIMATIC CHANGE
  • 2007-03-17. Evaluating the performance and utility of regional climate models: the PRUDENCE project in CLIMATIC CHANGE
  • 1998-08. Sources of systematic errors in the climatology of a regional climate model over Europe in CLIMATE DYNAMICS
  • 2005-10-14. A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability in CLIMATE DYNAMICS
  • 2004-08-04. Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961–1990 in CLIMATE DYNAMICS
  • 2007-03-17. Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget in CLIMATIC CHANGE
  • 2007-03-17. An inter-comparison of regional climate models for Europe: model performance in present-day climate in CLIMATIC CHANGE
  • 2004-01-11. The role of increasing temperature variability in European summer heatwaves in NATURE
  • 2007-03-20. An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections in CLIMATIC CHANGE
  • 2007-04-03. European summer climate variability in a heterogeneous multi-model ensemble in CLIMATIC CHANGE
  • 2002-04. Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10584-006-9220-5

    DOI

    http://dx.doi.org/10.1007/s10584-006-9220-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041085134


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rossby Centre, SMHI, SE-60176, Norrk\u00f6ping, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.6057.4", 
              "name": [
                "Rossby Centre, SMHI, SE-60176, Norrk\u00f6ping, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kjellstr\u00f6m", 
            "givenName": "Erik", 
            "id": "sg:person.012750265723.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750265723.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GeoBiosphere Science Centre, Lund University, Lund, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.4514.4", 
              "name": [
                "Rossby Centre, SMHI, SE-60176, Norrk\u00f6ping, Sweden", 
                "GeoBiosphere Science Centre, Lund University, Lund, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "B\u00e4rring", 
            "givenName": "Lars", 
            "id": "sg:person.01173752217.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173752217.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Meteorology, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.450268.d", 
              "name": [
                "Max Planck Institute for Meteorology, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jacob", 
            "givenName": "Daniela", 
            "id": "sg:person.01251040714.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251040714.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre (Reading Unit), Reading, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Met Office Hadley Centre (Reading Unit), Reading, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jones", 
            "givenName": "Richard", 
            "id": "sg:person.013447737257.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447737257.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "KNMI, de Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "KNMI, de Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lenderink", 
            "givenName": "Geert", 
            "id": "sg:person.010547300007.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric and Climate Science, ETH, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Atmospheric and Climate Science, ETH, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00e4r", 
            "givenName": "Christoph", 
            "id": "sg:person.0635043627.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635043627.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1014939413284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040677594", 
              "https://doi.org/10.1023/a:1014939413284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006979406", 
              "https://doi.org/10.1038/nature02300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9213-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047269817", 
              "https://doi.org/10.1007/s10584-006-9213-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9218-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022990559", 
              "https://doi.org/10.1007/s10584-006-9218-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-005-0068-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042908956", 
              "https://doi.org/10.1007/s00382-005-0068-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014902904197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035451665", 
              "https://doi.org/10.1023/a:1014902904197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9211-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014056389", 
              "https://doi.org/10.1007/s10584-006-9211-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9226-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031777874", 
              "https://doi.org/10.1007/s10584-006-9226-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0464-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010188143", 
              "https://doi.org/10.1007/s00382-004-0464-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9212-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025163396", 
              "https://doi.org/10.1007/s10584-006-9212-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9229-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042814340", 
              "https://doi.org/10.1007/s10584-006-9229-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011028323", 
              "https://doi.org/10.1007/s003820050249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9228-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037801261", 
              "https://doi.org/10.1007/s10584-006-9228-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-03-17", 
        "datePublishedReg": "2007-03-17", 
        "description": "Probability distributions of daily maximum and minimum temperatures in a suite of ten RCMs are investigated for (1) biases compared to observations in the present day climate and (2) climate change signals compared to the simulated present day climate. The simulated inter-model differences and climate changes are also compared to the observed natural variability as reflected in some very long instrumental records. All models have been forced with driving conditions from the same global model and run for both a control period and a future scenario period following the A2 emission scenario from IPCC. We find that the bias in the fifth percentile of daily minimum temperatures in winter and at the 95th percentile of daily maximum temperature during summer is smaller than 3 (\u00b15\u00b0C) when averaged over most (all) European sub-regions. The simulated changes in extreme temperatures both in summer and winter are larger than changes in the median for large areas. Differences between models are larger for the extremes than for mean temperatures. A comparison with historical data shows that the spread in model predicted changes in extreme temperatures is larger than the natural variability during the last centuries.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10584-006-9220-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "81"
          }
        ], 
        "keywords": [
          "present-day climate", 
          "natural variability", 
          "minimum temperature", 
          "climate change signal", 
          "long instrumental records", 
          "future scenario period", 
          "inter-model differences", 
          "A2 emission scenario", 
          "observed natural variability", 
          "same global model", 
          "daily temperature extremes", 
          "daily minimum temperature", 
          "extreme temperatures", 
          "daily maximum temperature", 
          "instrumental records", 
          "scenario period", 
          "change signal", 
          "emission scenarios", 
          "simulated changes", 
          "recent climate", 
          "future changes", 
          "temperature extremes", 
          "climate change", 
          "global model", 
          "mean temperature", 
          "climate", 
          "maximum temperature", 
          "large areas", 
          "last century", 
          "winter", 
          "summer", 
          "variability", 
          "extremes", 
          "historical data", 
          "IPCC", 
          "RCM", 
          "suite", 
          "temperature", 
          "records", 
          "changes", 
          "period", 
          "probability distribution", 
          "biases", 
          "model", 
          "area", 
          "century", 
          "Europe", 
          "percentile", 
          "distribution", 
          "scenarios", 
          "data", 
          "bias", 
          "control period", 
          "conditions", 
          "comparison", 
          "differences", 
          "spread", 
          "signals", 
          "median", 
          "fifth percentile", 
          "observations"
        ], 
        "name": "Modelling daily temperature extremes: recent climate and future changes over Europe", 
        "pagination": "249-265", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041085134"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10584-006-9220-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10584-006-9220-5", 
          "https://app.dimensions.ai/details/publication/pub.1041085134"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_446.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10584-006-9220-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9220-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9220-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9220-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9220-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      22 PREDICATES      99 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10584-006-9220-5 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N4bf126d14b174c79b5bb3d6e8857f57b
    4 schema:citation sg:pub.10.1007/s00382-004-0464-3
    5 sg:pub.10.1007/s00382-005-0068-6
    6 sg:pub.10.1007/s003820050249
    7 sg:pub.10.1007/s10584-006-9211-6
    8 sg:pub.10.1007/s10584-006-9212-5
    9 sg:pub.10.1007/s10584-006-9213-4
    10 sg:pub.10.1007/s10584-006-9218-z
    11 sg:pub.10.1007/s10584-006-9226-z
    12 sg:pub.10.1007/s10584-006-9228-x
    13 sg:pub.10.1007/s10584-006-9229-9
    14 sg:pub.10.1023/a:1014902904197
    15 sg:pub.10.1023/a:1014939413284
    16 sg:pub.10.1038/nature02300
    17 schema:datePublished 2007-03-17
    18 schema:datePublishedReg 2007-03-17
    19 schema:description Probability distributions of daily maximum and minimum temperatures in a suite of ten RCMs are investigated for (1) biases compared to observations in the present day climate and (2) climate change signals compared to the simulated present day climate. The simulated inter-model differences and climate changes are also compared to the observed natural variability as reflected in some very long instrumental records. All models have been forced with driving conditions from the same global model and run for both a control period and a future scenario period following the A2 emission scenario from IPCC. We find that the bias in the fifth percentile of daily minimum temperatures in winter and at the 95th percentile of daily maximum temperature during summer is smaller than 3 (±5°C) when averaged over most (all) European sub-regions. The simulated changes in extreme temperatures both in summer and winter are larger than changes in the median for large areas. Differences between models are larger for the extremes than for mean temperatures. A comparison with historical data shows that the spread in model predicted changes in extreme temperatures is larger than the natural variability during the last centuries.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N35b626a724634c7f979a183adb753b45
    24 N5a51d48145724cc09abee567a87a9bb6
    25 sg:journal.1028211
    26 schema:keywords A2 emission scenario
    27 Europe
    28 IPCC
    29 RCM
    30 area
    31 bias
    32 biases
    33 century
    34 change signal
    35 changes
    36 climate
    37 climate change
    38 climate change signal
    39 comparison
    40 conditions
    41 control period
    42 daily maximum temperature
    43 daily minimum temperature
    44 daily temperature extremes
    45 data
    46 differences
    47 distribution
    48 emission scenarios
    49 extreme temperatures
    50 extremes
    51 fifth percentile
    52 future changes
    53 future scenario period
    54 global model
    55 historical data
    56 instrumental records
    57 inter-model differences
    58 large areas
    59 last century
    60 long instrumental records
    61 maximum temperature
    62 mean temperature
    63 median
    64 minimum temperature
    65 model
    66 natural variability
    67 observations
    68 observed natural variability
    69 percentile
    70 period
    71 present-day climate
    72 probability distribution
    73 recent climate
    74 records
    75 same global model
    76 scenario period
    77 scenarios
    78 signals
    79 simulated changes
    80 spread
    81 suite
    82 summer
    83 temperature
    84 temperature extremes
    85 variability
    86 winter
    87 schema:name Modelling daily temperature extremes: recent climate and future changes over Europe
    88 schema:pagination 249-265
    89 schema:productId N3a3e7e79180f4f1d8ef88c9adc2c3516
    90 N492351eb7c894ec4bc871bd464ca99cc
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041085134
    92 https://doi.org/10.1007/s10584-006-9220-5
    93 schema:sdDatePublished 2022-06-01T22:05
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N432d9899149d4db082da27d1d6ae446f
    96 schema:url https://doi.org/10.1007/s10584-006-9220-5
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N1600f158aea74ec2bdb42ddf99500d2c rdf:first sg:person.01251040714.08
    101 rdf:rest N384b0c87999e44a0951606387697524c
    102 N35b626a724634c7f979a183adb753b45 schema:issueNumber Suppl 1
    103 rdf:type schema:PublicationIssue
    104 N384b0c87999e44a0951606387697524c rdf:first sg:person.013447737257.93
    105 rdf:rest Na67fba3949254ce39c7e0133bc9b76e9
    106 N3a3e7e79180f4f1d8ef88c9adc2c3516 schema:name doi
    107 schema:value 10.1007/s10584-006-9220-5
    108 rdf:type schema:PropertyValue
    109 N432d9899149d4db082da27d1d6ae446f schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N492351eb7c894ec4bc871bd464ca99cc schema:name dimensions_id
    112 schema:value pub.1041085134
    113 rdf:type schema:PropertyValue
    114 N4bf126d14b174c79b5bb3d6e8857f57b rdf:first sg:person.012750265723.21
    115 rdf:rest N883ccb8b732041579b8675e2ad93c7d4
    116 N5a51d48145724cc09abee567a87a9bb6 schema:volumeNumber 81
    117 rdf:type schema:PublicationVolume
    118 N80bda4b2b4c442278c66b9bfdb898ea6 rdf:first sg:person.0635043627.22
    119 rdf:rest rdf:nil
    120 N883ccb8b732041579b8675e2ad93c7d4 rdf:first sg:person.01173752217.66
    121 rdf:rest N1600f158aea74ec2bdb42ddf99500d2c
    122 Na67fba3949254ce39c7e0133bc9b76e9 rdf:first sg:person.010547300007.01
    123 rdf:rest N80bda4b2b4c442278c66b9bfdb898ea6
    124 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Earth Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Physical Geography and Environmental Geoscience
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1028211 schema:issn 0165-0009
    131 1573-1480
    132 schema:name Climatic Change
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.010547300007.01 schema:affiliation grid-institutes:grid.8653.8
    136 schema:familyName Lenderink
    137 schema:givenName Geert
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01
    139 rdf:type schema:Person
    140 sg:person.01173752217.66 schema:affiliation grid-institutes:grid.4514.4
    141 schema:familyName Bärring
    142 schema:givenName Lars
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173752217.66
    144 rdf:type schema:Person
    145 sg:person.01251040714.08 schema:affiliation grid-institutes:grid.450268.d
    146 schema:familyName Jacob
    147 schema:givenName Daniela
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251040714.08
    149 rdf:type schema:Person
    150 sg:person.012750265723.21 schema:affiliation grid-institutes:grid.6057.4
    151 schema:familyName Kjellström
    152 schema:givenName Erik
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750265723.21
    154 rdf:type schema:Person
    155 sg:person.013447737257.93 schema:affiliation grid-institutes:None
    156 schema:familyName Jones
    157 schema:givenName Richard
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447737257.93
    159 rdf:type schema:Person
    160 sg:person.0635043627.22 schema:affiliation grid-institutes:grid.5801.c
    161 schema:familyName Schär
    162 schema:givenName Christoph
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635043627.22
    164 rdf:type schema:Person
    165 sg:pub.10.1007/s00382-004-0464-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010188143
    166 https://doi.org/10.1007/s00382-004-0464-3
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00382-005-0068-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042908956
    169 https://doi.org/10.1007/s00382-005-0068-6
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s003820050249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011028323
    172 https://doi.org/10.1007/s003820050249
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10584-006-9211-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014056389
    175 https://doi.org/10.1007/s10584-006-9211-6
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s10584-006-9212-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025163396
    178 https://doi.org/10.1007/s10584-006-9212-5
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s10584-006-9213-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269817
    181 https://doi.org/10.1007/s10584-006-9213-4
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s10584-006-9218-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022990559
    184 https://doi.org/10.1007/s10584-006-9218-z
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s10584-006-9226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031777874
    187 https://doi.org/10.1007/s10584-006-9226-z
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s10584-006-9228-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037801261
    190 https://doi.org/10.1007/s10584-006-9228-x
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10584-006-9229-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042814340
    193 https://doi.org/10.1007/s10584-006-9229-9
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1023/a:1014902904197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035451665
    196 https://doi.org/10.1023/a:1014902904197
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1023/a:1014939413284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040677594
    199 https://doi.org/10.1023/a:1014939413284
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature02300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979406
    202 https://doi.org/10.1038/nature02300
    203 rdf:type schema:CreativeWork
    204 grid-institutes:None schema:alternateName Met Office Hadley Centre (Reading Unit), Reading, UK
    205 schema:name Met Office Hadley Centre (Reading Unit), Reading, UK
    206 rdf:type schema:Organization
    207 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Hamburg, Germany
    208 schema:name Max Planck Institute for Meteorology, Hamburg, Germany
    209 rdf:type schema:Organization
    210 grid-institutes:grid.4514.4 schema:alternateName GeoBiosphere Science Centre, Lund University, Lund, Sweden
    211 schema:name GeoBiosphere Science Centre, Lund University, Lund, Sweden
    212 Rossby Centre, SMHI, SE-60176, Norrköping, Sweden
    213 rdf:type schema:Organization
    214 grid-institutes:grid.5801.c schema:alternateName Atmospheric and Climate Science, ETH, Zurich, Switzerland
    215 schema:name Atmospheric and Climate Science, ETH, Zurich, Switzerland
    216 rdf:type schema:Organization
    217 grid-institutes:grid.6057.4 schema:alternateName Rossby Centre, SMHI, SE-60176, Norrköping, Sweden
    218 schema:name Rossby Centre, SMHI, SE-60176, Norrköping, Sweden
    219 rdf:type schema:Organization
    220 grid-institutes:grid.8653.8 schema:alternateName KNMI, de Bilt, The Netherlands
    221 schema:name KNMI, de Bilt, The Netherlands
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...