Impacts of thermohaline circulation shutdown in the twenty-first century View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01-13

AUTHORS

Michael Vellinga, Richard A. Wood

ABSTRACT

We discuss climate impacts of a hypothetical shutdown of the thermohaline circulation (‘THC’) in the 2050s, using the climate model HadCM3. Previous studies have generally focussed on the effects on pre-industrial climate. Here we take into account increased greenhouse gas concentrations according to an IS92a emissions scenario. THC shutdown causes cooling of the Northern Hemisphere of -1.7˚C, locally stronger. Over western Europe cooling is strong enough for a return to pre-industrial conditions and a significant increase in the occurrence of frost and snow cover. Global warming restricts the increase in sea ice cover after THC shutdown. This lessens the amount of cooling over NW Europe, but increases it over North America, compared to pre-industrial shutdown. This reflects a non-linearity in the local temperature response to THC shutdown. Precipitation change after THC shutdown is generally opposite to that caused by global warming, except in western and southern Europe, where summer drying is enhanced, and in Central America and southeast Asia, where precipitation is also further reduced. Local rise in sea level after THC shutdown can be large along Atlantic coasts (pm; 25,cm), which would add to the rise caused by global warming. Potentially rapid THC shutdown adds to the range of uncertainty of projected future climate change. More... »

PAGES

43-63

References to SciGraph publications

  • 2002-09. Ocean circulation and climate during the past 120,000 years in NATURE
  • 2004-11-09. Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model in CLIMATE DYNAMICS
  • 2002-09. Constraints on future changes in climate and the hydrologic cycle in NATURE
  • 2000-08. The role of the individual air-sea flux components in CO2-induced changes of the ocean's circulation and climate in CLIMATE DYNAMICS
  • 2000-11. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data in NATURE
  • 2004-08. Quantification of modelling uncertainties in a large ensemble of climate change simulations in NATURE
  • 2000-02. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 2003-02-18. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios in CLIMATE DYNAMICS
  • 1998-01. Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes in NATURE
  • 2003-03-04. Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration in CLIMATE DYNAMICS
  • 2003-11-04. The role of the Atlantic freshwater balance in the hysteresis of the meridional overturning circulation in CLIMATE DYNAMICS
  • 2005-01. Uncertainty in predictions of the climate response to rising levels of greenhouse gases in NATURE
  • 2002-08. Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation in CLIMATIC CHANGE
  • 2007-01-16. Economically optimal risk reduction strategies in the face of uncertain climate thresholds in CLIMATIC CHANGE
  • 1999-06. Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model in NATURE
  • 2005-02-23. Dynamic sea level changes following changes in the thermohaline circulation in CLIMATE DYNAMICS
  • 2000-02. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 in CLIMATE DYNAMICS
  • 2006-04-06. Causes and uncertainty of future summer drying over Europe in CLIMATE DYNAMICS
  • 1996-11. On the freshwater forcing and transport of the Atlantic thermohaline circulation in CLIMATE DYNAMICS
  • 1999-10. Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model in CLIMATIC CHANGE
  • 1999-03. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10584-006-9146-y

    DOI

    http://dx.doi.org/10.1007/s10584-006-9146-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016910488


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vellinga", 
            "givenName": "Michael", 
            "id": "sg:person.07551344707.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551344707.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wood", 
            "givenName": "Richard A.", 
            "id": "sg:person.015637061237.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature03301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001284", 
              "https://doi.org/10.1038/nature03301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046916950", 
              "https://doi.org/10.1038/nature01092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005474526406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042234603", 
              "https://doi.org/10.1023/a:1005474526406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0505-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027674328", 
              "https://doi.org/10.1007/s00382-004-0505-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35044048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034572182", 
              "https://doi.org/10.1038/35044048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0359-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043514443", 
              "https://doi.org/10.1007/s00382-003-0359-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0296-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085138454", 
              "https://doi.org/10.1007/s00382-002-0296-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820000066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027780110", 
              "https://doi.org/10.1007/s003820000066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016168827653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046187375", 
              "https://doi.org/10.1023/a:1016168827653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002170907", 
              "https://doi.org/10.1007/s003820050009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9137-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033148458", 
              "https://doi.org/10.1007/s10584-006-9137-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018345935", 
              "https://doi.org/10.1007/s003820050276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0125-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027942190", 
              "https://doi.org/10.1007/s00382-006-0125-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038659281", 
              "https://doi.org/10.1038/35119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0302-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051987294", 
              "https://doi.org/10.1007/s00382-002-0302-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015242699", 
              "https://doi.org/10.1007/s003820050010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009461489", 
              "https://doi.org/10.1007/s003820050144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011881242", 
              "https://doi.org/10.1038/21170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0474-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021906357", 
              "https://doi.org/10.1007/s00382-004-0474-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052931301", 
              "https://doi.org/10.1038/nature01090"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-01-13", 
        "datePublishedReg": "2007-01-13", 
        "description": "We discuss climate impacts of a hypothetical shutdown of the thermohaline circulation (\u2018THC\u2019) in the 2050s, using the climate model HadCM3. Previous studies have generally focussed on the effects on pre-industrial climate. Here we take into account increased greenhouse gas concentrations according to an IS92a emissions scenario. THC shutdown causes cooling of the Northern Hemisphere of -1.7\u02daC, locally stronger. Over western Europe cooling is strong enough for a return to pre-industrial conditions and a significant increase in the occurrence of frost and snow cover. Global warming restricts the increase in sea ice cover after THC shutdown. This lessens the amount of cooling over NW Europe, but increases it over North America, compared to pre-industrial shutdown. This reflects a non-linearity in the local temperature response to THC shutdown. Precipitation change after THC shutdown is generally opposite to that caused by global warming, except in western and southern Europe, where summer drying is enhanced, and in Central America and southeast Asia, where precipitation is also further reduced. Local rise in sea level after THC shutdown can be large along Atlantic coasts (pm; 25,cm), which would add to the rise caused by global warming. Potentially rapid THC shutdown adds to the range of uncertainty of projected future climate change.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10584-006-9146-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "keywords": [
          "THC shutdown", 
          "thermohaline circulation", 
          "global warming", 
          "pre-industrial climate", 
          "pre-industrial conditions", 
          "IS92a emission scenario", 
          "climate model HadCM3", 
          "sea ice cover", 
          "greenhouse gas concentrations", 
          "future climate change", 
          "local temperature response", 
          "occurrence of frost", 
          "range of uncertainty", 
          "precipitation changes", 
          "ice cover", 
          "NW Europe", 
          "sea level", 
          "summer drying", 
          "emission scenarios", 
          "Northern Hemisphere", 
          "snow cover", 
          "climate impacts", 
          "climate change", 
          "Atlantic coast", 
          "warming", 
          "gas concentrations", 
          "North America", 
          "temperature response", 
          "twenty-first century", 
          "southern Europe", 
          "Central America", 
          "local rise", 
          "cover", 
          "circulation", 
          "Southeast Asia", 
          "HadCM3", 
          "America", 
          "climate", 
          "coast", 
          "precipitation", 
          "hemisphere", 
          "cooling", 
          "frost", 
          "rise", 
          "shutdown", 
          "Europe", 
          "Asia", 
          "occurrence", 
          "changes", 
          "previous studies", 
          "impact", 
          "uncertainty", 
          "century", 
          "scenarios", 
          "drying", 
          "concentration", 
          "increase", 
          "range", 
          "conditions", 
          "amount", 
          "account", 
          "response", 
          "significant increase", 
          "study", 
          "levels", 
          "return", 
          "effect", 
          "hypothetical shutdown", 
          "model HadCM3", 
          "western Europe cooling", 
          "Europe cooling", 
          "pre-industrial shutdown", 
          "rapid THC shutdown"
        ], 
        "name": "Impacts of thermohaline circulation shutdown in the twenty-first century", 
        "pagination": "43-63", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016910488"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10584-006-9146-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10584-006-9146-y", 
          "https://app.dimensions.ai/details/publication/pub.1016910488"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_444.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10584-006-9146-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9146-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9146-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9146-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9146-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      22 PREDICATES      119 URIs      90 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10584-006-9146-y schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author Naefb71123a3f40348d4fc2a0a90911a6
    4 schema:citation sg:pub.10.1007/s00382-002-0296-y
    5 sg:pub.10.1007/s00382-002-0302-4
    6 sg:pub.10.1007/s00382-003-0359-8
    7 sg:pub.10.1007/s00382-004-0474-1
    8 sg:pub.10.1007/s00382-004-0505-y
    9 sg:pub.10.1007/s00382-006-0125-9
    10 sg:pub.10.1007/s003820000066
    11 sg:pub.10.1007/s003820050009
    12 sg:pub.10.1007/s003820050010
    13 sg:pub.10.1007/s003820050144
    14 sg:pub.10.1007/s003820050276
    15 sg:pub.10.1007/s10584-006-9137-z
    16 sg:pub.10.1023/a:1005474526406
    17 sg:pub.10.1023/a:1016168827653
    18 sg:pub.10.1038/21170
    19 sg:pub.10.1038/35044048
    20 sg:pub.10.1038/35119
    21 sg:pub.10.1038/nature01090
    22 sg:pub.10.1038/nature01092
    23 sg:pub.10.1038/nature02771
    24 sg:pub.10.1038/nature03301
    25 schema:datePublished 2007-01-13
    26 schema:datePublishedReg 2007-01-13
    27 schema:description We discuss climate impacts of a hypothetical shutdown of the thermohaline circulation (‘THC’) in the 2050s, using the climate model HadCM3. Previous studies have generally focussed on the effects on pre-industrial climate. Here we take into account increased greenhouse gas concentrations according to an IS92a emissions scenario. THC shutdown causes cooling of the Northern Hemisphere of -1.7˚C, locally stronger. Over western Europe cooling is strong enough for a return to pre-industrial conditions and a significant increase in the occurrence of frost and snow cover. Global warming restricts the increase in sea ice cover after THC shutdown. This lessens the amount of cooling over NW Europe, but increases it over North America, compared to pre-industrial shutdown. This reflects a non-linearity in the local temperature response to THC shutdown. Precipitation change after THC shutdown is generally opposite to that caused by global warming, except in western and southern Europe, where summer drying is enhanced, and in Central America and southeast Asia, where precipitation is also further reduced. Local rise in sea level after THC shutdown can be large along Atlantic coasts (pm; 25,cm), which would add to the rise caused by global warming. Potentially rapid THC shutdown adds to the range of uncertainty of projected future climate change.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N8e3ae3676d134f27ae27fd96cdd12d21
    32 Nfd5ce17503384852921fa6f427008d95
    33 sg:journal.1028211
    34 schema:keywords America
    35 Asia
    36 Atlantic coast
    37 Central America
    38 Europe
    39 Europe cooling
    40 HadCM3
    41 IS92a emission scenario
    42 NW Europe
    43 North America
    44 Northern Hemisphere
    45 Southeast Asia
    46 THC shutdown
    47 account
    48 amount
    49 century
    50 changes
    51 circulation
    52 climate
    53 climate change
    54 climate impacts
    55 climate model HadCM3
    56 coast
    57 concentration
    58 conditions
    59 cooling
    60 cover
    61 drying
    62 effect
    63 emission scenarios
    64 frost
    65 future climate change
    66 gas concentrations
    67 global warming
    68 greenhouse gas concentrations
    69 hemisphere
    70 hypothetical shutdown
    71 ice cover
    72 impact
    73 increase
    74 levels
    75 local rise
    76 local temperature response
    77 model HadCM3
    78 occurrence
    79 occurrence of frost
    80 pre-industrial climate
    81 pre-industrial conditions
    82 pre-industrial shutdown
    83 precipitation
    84 precipitation changes
    85 previous studies
    86 range
    87 range of uncertainty
    88 rapid THC shutdown
    89 response
    90 return
    91 rise
    92 scenarios
    93 sea ice cover
    94 sea level
    95 shutdown
    96 significant increase
    97 snow cover
    98 southern Europe
    99 study
    100 summer drying
    101 temperature response
    102 thermohaline circulation
    103 twenty-first century
    104 uncertainty
    105 warming
    106 western Europe cooling
    107 schema:name Impacts of thermohaline circulation shutdown in the twenty-first century
    108 schema:pagination 43-63
    109 schema:productId N446bfbd8d83c4f5cb97b22647d8dd0f1
    110 Neeebafce36774dcf9a5a12419e569d62
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016910488
    112 https://doi.org/10.1007/s10584-006-9146-y
    113 schema:sdDatePublished 2021-12-01T19:19
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher Nbee9b945ca314a05a7aae6beaf2d578b
    116 schema:url https://doi.org/10.1007/s10584-006-9146-y
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N446bfbd8d83c4f5cb97b22647d8dd0f1 schema:name dimensions_id
    121 schema:value pub.1016910488
    122 rdf:type schema:PropertyValue
    123 N8e3ae3676d134f27ae27fd96cdd12d21 schema:issueNumber 1-2
    124 rdf:type schema:PublicationIssue
    125 N9f5ad2f20d7a4b1497b73bd6557052f7 rdf:first sg:person.015637061237.00
    126 rdf:rest rdf:nil
    127 Naefb71123a3f40348d4fc2a0a90911a6 rdf:first sg:person.07551344707.62
    128 rdf:rest N9f5ad2f20d7a4b1497b73bd6557052f7
    129 Nbee9b945ca314a05a7aae6beaf2d578b schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Neeebafce36774dcf9a5a12419e569d62 schema:name doi
    132 schema:value 10.1007/s10584-006-9146-y
    133 rdf:type schema:PropertyValue
    134 Nfd5ce17503384852921fa6f427008d95 schema:volumeNumber 91
    135 rdf:type schema:PublicationVolume
    136 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Earth Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Atmospheric Sciences
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1028211 schema:issn 0165-0009
    143 1573-1480
    144 schema:name Climatic Change
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.015637061237.00 schema:affiliation grid-institutes:grid.17100.37
    148 schema:familyName Wood
    149 schema:givenName Richard A.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00
    151 rdf:type schema:Person
    152 sg:person.07551344707.62 schema:affiliation grid-institutes:grid.17100.37
    153 schema:familyName Vellinga
    154 schema:givenName Michael
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551344707.62
    156 rdf:type schema:Person
    157 sg:pub.10.1007/s00382-002-0296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138454
    158 https://doi.org/10.1007/s00382-002-0296-y
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00382-002-0302-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051987294
    161 https://doi.org/10.1007/s00382-002-0302-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00382-003-0359-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043514443
    164 https://doi.org/10.1007/s00382-003-0359-8
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00382-004-0474-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021906357
    167 https://doi.org/10.1007/s00382-004-0474-1
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00382-004-0505-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027674328
    170 https://doi.org/10.1007/s00382-004-0505-y
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00382-006-0125-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027942190
    173 https://doi.org/10.1007/s00382-006-0125-9
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s003820000066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780110
    176 https://doi.org/10.1007/s003820000066
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
    179 https://doi.org/10.1007/s003820050009
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
    182 https://doi.org/10.1007/s003820050010
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s003820050144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009461489
    185 https://doi.org/10.1007/s003820050144
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s003820050276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018345935
    188 https://doi.org/10.1007/s003820050276
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10584-006-9137-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033148458
    191 https://doi.org/10.1007/s10584-006-9137-z
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1023/a:1005474526406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042234603
    194 https://doi.org/10.1023/a:1005474526406
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1023/a:1016168827653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046187375
    197 https://doi.org/10.1023/a:1016168827653
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/21170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011881242
    200 https://doi.org/10.1038/21170
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/35044048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034572182
    203 https://doi.org/10.1038/35044048
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/35119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038659281
    206 https://doi.org/10.1038/35119
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nature01090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052931301
    209 https://doi.org/10.1038/nature01090
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
    212 https://doi.org/10.1038/nature01092
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
    215 https://doi.org/10.1038/nature02771
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature03301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001284
    218 https://doi.org/10.1038/nature03301
    219 rdf:type schema:CreativeWork
    220 grid-institutes:grid.17100.37 schema:alternateName Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, United Kingdom
    221 schema:name Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, United Kingdom
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...