2006-10-10
AUTHORSClaudia Tebaldi, Katharinec Hayhoe, Julie M. Arblaster, Gerald A. Meehl
ABSTRACTProjections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments. More... »
PAGES185-211
http://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4
DOIhttp://dx.doi.org/10.1007/s10584-006-9051-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033458924
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.57828.30",
"name": [
"Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Tebaldi",
"givenName": "Claudia",
"id": "sg:person.015561030205.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561030205.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Geosciences, Texas Tech University, Lubbock, TX, USA",
"id": "http://www.grid.ac/institutes/grid.264784.b",
"name": [
"Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA",
"Department of Geosciences, Texas Tech University, Lubbock, TX, USA"
],
"type": "Organization"
},
"familyName": "Hayhoe",
"givenName": "Katharinec",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bureau of Meteorology Research Centre, Melbourne, Australia",
"id": "http://www.grid.ac/institutes/grid.1527.1",
"name": [
"Climate and Global Dynamics Division, NCAR, Boulder, CO, USA",
"Bureau of Meteorology Research Centre, Melbourne, Australia"
],
"type": "Organization"
},
"familyName": "Arblaster",
"givenName": "Julie M.",
"id": "sg:person.011452203137.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452203137.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climate and Global Dynamics Division, NCAR, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.57828.30",
"name": [
"Climate and Global Dynamics Division, NCAR, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Meehl",
"givenName": "Gerald A.",
"id": "sg:person.0667652200.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667652200.29"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10584-005-4787-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033008429",
"https://doi.org/10.1007/s10584-005-4787-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-002-0249-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049125383",
"https://doi.org/10.1007/s00382-002-0249-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-003-0339-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001799095",
"https://doi.org/10.1007/s00382-003-0339-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820000079",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012213043",
"https://doi.org/10.1007/s003820000079"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-005-1817-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044592295",
"https://doi.org/10.1007/s10584-005-1817-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/415512a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016943344",
"https://doi.org/10.1038/415512a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1023694115864",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008098197",
"https://doi.org/10.1023/a:1023694115864"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00704-003-0019-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005594482",
"https://doi.org/10.1007/s00704-003-0019-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1026035305597",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035832790",
"https://doi.org/10.1023/a:1026035305597"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00376-002-0056-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015537838",
"https://doi.org/10.1007/s00376-002-0056-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-004-0442-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025795726",
"https://doi.org/10.1007/s00382-004-0442-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-003-0340-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016088034",
"https://doi.org/10.1007/s00382-003-0340-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-10-10",
"datePublishedReg": "2006-10-10",
"description": "Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments.",
"genre": "article",
"id": "sg:pub.10.1007/s10584-006-9051-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1028211",
"issn": [
"0165-0009",
"1573-1480"
],
"name": "Climatic Change",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "79"
}
],
"keywords": [
"global general circulation model",
"climate extremes",
"climate change",
"heavy rainfall amounts",
"individual model projections",
"general circulation model",
"dry spell length",
"Fourth Assessment Report",
"projections of changes",
"heat wave frequency",
"GCM ensemble",
"GCM simulations",
"circulation model",
"Precipitation Index",
"precipitation indicators",
"rainfall amount",
"wetter world",
"different emission rates",
"emission scenarios",
"model projections",
"model ensemble",
"Intergovernmental Panel",
"previous observational studies",
"warmer climate",
"global average",
"Assessment Report",
"temperature indices",
"future simulations",
"regional patterns",
"modeling advances",
"spatial distribution",
"natural systems",
"extreme temperatures",
"historical trends",
"extremes",
"emission rates",
"greater temperature",
"impact assessment",
"ensemble",
"potential impact",
"relative magnitude",
"terms of direction",
"significant implications",
"projections",
"first overview",
"climate",
"trends",
"scenarios",
"changes",
"geographical scales",
"substantial differences",
"temperature",
"occurrence",
"magnitude",
"indicators",
"minor differences",
"simulations",
"scale",
"century",
"model",
"distribution",
"average",
"index",
"such indicators",
"patterns",
"impact",
"implications",
"direction",
"agreement",
"significance",
"range",
"amount",
"differences",
"assessment",
"world",
"analysis",
"rate",
"advances",
"frequency",
"depiction",
"system",
"study",
"terms",
"emerge",
"opportunities",
"overview",
"length",
"focus",
"regard",
"consensus",
"reliability",
"sense",
"panel",
"observational study",
"report",
"basic sense"
],
"name": "Going to the Extremes",
"pagination": "185-211",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033458924"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10584-006-9051-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10584-006-9051-4",
"https://app.dimensions.ai/details/publication/pub.1033458924"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_417.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10584-006-9051-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'
This table displays all metadata directly associated to this object as RDF triples.
232 TRIPLES
22 PREDICATES
133 URIs
113 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10584-006-9051-4 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | Nd671a124505b42e39013c4c58198c5d7 |
4 | ″ | schema:citation | sg:pub.10.1007/s00376-002-0056-2 |
5 | ″ | ″ | sg:pub.10.1007/s00382-002-0249-5 |
6 | ″ | ″ | sg:pub.10.1007/s00382-003-0339-z |
7 | ″ | ″ | sg:pub.10.1007/s00382-003-0340-6 |
8 | ″ | ″ | sg:pub.10.1007/s00382-004-0442-9 |
9 | ″ | ″ | sg:pub.10.1007/s003820000079 |
10 | ″ | ″ | sg:pub.10.1007/s00704-003-0019-2 |
11 | ″ | ″ | sg:pub.10.1007/s10584-005-1817-6 |
12 | ″ | ″ | sg:pub.10.1007/s10584-005-4787-9 |
13 | ″ | ″ | sg:pub.10.1023/a:1023694115864 |
14 | ″ | ″ | sg:pub.10.1023/a:1026035305597 |
15 | ″ | ″ | sg:pub.10.1038/415512a |
16 | ″ | schema:datePublished | 2006-10-10 |
17 | ″ | schema:datePublishedReg | 2006-10-10 |
18 | ″ | schema:description | Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments. |
19 | ″ | schema:genre | article |
20 | ″ | schema:inLanguage | en |
21 | ″ | schema:isAccessibleForFree | false |
22 | ″ | schema:isPartOf | N0de5f3feb21e4df2aa97a3a307a4bd44 |
23 | ″ | ″ | Naff3e871b5e548ccb1674e0912ea3f70 |
24 | ″ | ″ | sg:journal.1028211 |
25 | ″ | schema:keywords | Assessment Report |
26 | ″ | ″ | Fourth Assessment Report |
27 | ″ | ″ | GCM ensemble |
28 | ″ | ″ | GCM simulations |
29 | ″ | ″ | Intergovernmental Panel |
30 | ″ | ″ | Precipitation Index |
31 | ″ | ″ | advances |
32 | ″ | ″ | agreement |
33 | ″ | ″ | amount |
34 | ″ | ″ | analysis |
35 | ″ | ″ | assessment |
36 | ″ | ″ | average |
37 | ″ | ″ | basic sense |
38 | ″ | ″ | century |
39 | ″ | ″ | changes |
40 | ″ | ″ | circulation model |
41 | ″ | ″ | climate |
42 | ″ | ″ | climate change |
43 | ″ | ″ | climate extremes |
44 | ″ | ″ | consensus |
45 | ″ | ″ | depiction |
46 | ″ | ″ | differences |
47 | ″ | ″ | different emission rates |
48 | ″ | ″ | direction |
49 | ″ | ″ | distribution |
50 | ″ | ″ | dry spell length |
51 | ″ | ″ | emerge |
52 | ″ | ″ | emission rates |
53 | ″ | ″ | emission scenarios |
54 | ″ | ″ | ensemble |
55 | ″ | ″ | extreme temperatures |
56 | ″ | ″ | extremes |
57 | ″ | ″ | first overview |
58 | ″ | ″ | focus |
59 | ″ | ″ | frequency |
60 | ″ | ″ | future simulations |
61 | ″ | ″ | general circulation model |
62 | ″ | ″ | geographical scales |
63 | ″ | ″ | global average |
64 | ″ | ″ | global general circulation model |
65 | ″ | ″ | greater temperature |
66 | ″ | ″ | heat wave frequency |
67 | ″ | ″ | heavy rainfall amounts |
68 | ″ | ″ | historical trends |
69 | ″ | ″ | impact |
70 | ″ | ″ | impact assessment |
71 | ″ | ″ | implications |
72 | ″ | ″ | index |
73 | ″ | ″ | indicators |
74 | ″ | ″ | individual model projections |
75 | ″ | ″ | length |
76 | ″ | ″ | magnitude |
77 | ″ | ″ | minor differences |
78 | ″ | ″ | model |
79 | ″ | ″ | model ensemble |
80 | ″ | ″ | model projections |
81 | ″ | ″ | modeling advances |
82 | ″ | ″ | natural systems |
83 | ″ | ″ | observational study |
84 | ″ | ″ | occurrence |
85 | ″ | ″ | opportunities |
86 | ″ | ″ | overview |
87 | ″ | ″ | panel |
88 | ″ | ″ | patterns |
89 | ″ | ″ | potential impact |
90 | ″ | ″ | precipitation indicators |
91 | ″ | ″ | previous observational studies |
92 | ″ | ″ | projections |
93 | ″ | ″ | projections of changes |
94 | ″ | ″ | rainfall amount |
95 | ″ | ″ | range |
96 | ″ | ″ | rate |
97 | ″ | ″ | regard |
98 | ″ | ″ | regional patterns |
99 | ″ | ″ | relative magnitude |
100 | ″ | ″ | reliability |
101 | ″ | ″ | report |
102 | ″ | ″ | scale |
103 | ″ | ″ | scenarios |
104 | ″ | ″ | sense |
105 | ″ | ″ | significance |
106 | ″ | ″ | significant implications |
107 | ″ | ″ | simulations |
108 | ″ | ″ | spatial distribution |
109 | ″ | ″ | study |
110 | ″ | ″ | substantial differences |
111 | ″ | ″ | such indicators |
112 | ″ | ″ | system |
113 | ″ | ″ | temperature |
114 | ″ | ″ | temperature indices |
115 | ″ | ″ | terms |
116 | ″ | ″ | terms of direction |
117 | ″ | ″ | trends |
118 | ″ | ″ | warmer climate |
119 | ″ | ″ | wetter world |
120 | ″ | ″ | world |
121 | ″ | schema:name | Going to the Extremes |
122 | ″ | schema:pagination | 185-211 |
123 | ″ | schema:productId | N37956b040fea49a6ba0d5727ed907da6 |
124 | ″ | ″ | N9eb3edaf03564963b768c399ac354036 |
125 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033458924 |
126 | ″ | ″ | https://doi.org/10.1007/s10584-006-9051-4 |
127 | ″ | schema:sdDatePublished | 2022-06-01T22:04 |
128 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
129 | ″ | schema:sdPublisher | N79907431b35345d882dcf2c178e910a4 |
130 | ″ | schema:url | https://doi.org/10.1007/s10584-006-9051-4 |
131 | ″ | sgo:license | sg:explorer/license/ |
132 | ″ | sgo:sdDataset | articles |
133 | ″ | rdf:type | schema:ScholarlyArticle |
134 | N0de5f3feb21e4df2aa97a3a307a4bd44 | schema:volumeNumber | 79 |
135 | ″ | rdf:type | schema:PublicationVolume |
136 | N0f41ebdb887a4eb8936ff8a4864df64b | rdf:first | sg:person.011452203137.38 |
137 | ″ | rdf:rest | N3759695986484a07b6d7ddf0b2fcca11 |
138 | N3759695986484a07b6d7ddf0b2fcca11 | rdf:first | sg:person.0667652200.29 |
139 | ″ | rdf:rest | rdf:nil |
140 | N37956b040fea49a6ba0d5727ed907da6 | schema:name | dimensions_id |
141 | ″ | schema:value | pub.1033458924 |
142 | ″ | rdf:type | schema:PropertyValue |
143 | N4c51a83266204627b81c9dd17a78f750 | rdf:first | Ncde334fa82434fdaa1bb7b11c66a0ebf |
144 | ″ | rdf:rest | N0f41ebdb887a4eb8936ff8a4864df64b |
145 | N79907431b35345d882dcf2c178e910a4 | schema:name | Springer Nature - SN SciGraph project |
146 | ″ | rdf:type | schema:Organization |
147 | N9eb3edaf03564963b768c399ac354036 | schema:name | doi |
148 | ″ | schema:value | 10.1007/s10584-006-9051-4 |
149 | ″ | rdf:type | schema:PropertyValue |
150 | Naff3e871b5e548ccb1674e0912ea3f70 | schema:issueNumber | 3-4 |
151 | ″ | rdf:type | schema:PublicationIssue |
152 | Ncde334fa82434fdaa1bb7b11c66a0ebf | schema:affiliation | grid-institutes:grid.264784.b |
153 | ″ | schema:familyName | Hayhoe |
154 | ″ | schema:givenName | Katharinec |
155 | ″ | rdf:type | schema:Person |
156 | Nd671a124505b42e39013c4c58198c5d7 | rdf:first | sg:person.015561030205.29 |
157 | ″ | rdf:rest | N4c51a83266204627b81c9dd17a78f750 |
158 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
159 | ″ | schema:name | Earth Sciences |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
162 | ″ | schema:name | Atmospheric Sciences |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | sg:journal.1028211 | schema:issn | 0165-0009 |
165 | ″ | ″ | 1573-1480 |
166 | ″ | schema:name | Climatic Change |
167 | ″ | schema:publisher | Springer Nature |
168 | ″ | rdf:type | schema:Periodical |
169 | sg:person.011452203137.38 | schema:affiliation | grid-institutes:grid.1527.1 |
170 | ″ | schema:familyName | Arblaster |
171 | ″ | schema:givenName | Julie M. |
172 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452203137.38 |
173 | ″ | rdf:type | schema:Person |
174 | sg:person.015561030205.29 | schema:affiliation | grid-institutes:grid.57828.30 |
175 | ″ | schema:familyName | Tebaldi |
176 | ″ | schema:givenName | Claudia |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561030205.29 |
178 | ″ | rdf:type | schema:Person |
179 | sg:person.0667652200.29 | schema:affiliation | grid-institutes:grid.57828.30 |
180 | ″ | schema:familyName | Meehl |
181 | ″ | schema:givenName | Gerald A. |
182 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667652200.29 |
183 | ″ | rdf:type | schema:Person |
184 | sg:pub.10.1007/s00376-002-0056-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015537838 |
185 | ″ | ″ | https://doi.org/10.1007/s00376-002-0056-2 |
186 | ″ | rdf:type | schema:CreativeWork |
187 | sg:pub.10.1007/s00382-002-0249-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049125383 |
188 | ″ | ″ | https://doi.org/10.1007/s00382-002-0249-5 |
189 | ″ | rdf:type | schema:CreativeWork |
190 | sg:pub.10.1007/s00382-003-0339-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001799095 |
191 | ″ | ″ | https://doi.org/10.1007/s00382-003-0339-z |
192 | ″ | rdf:type | schema:CreativeWork |
193 | sg:pub.10.1007/s00382-003-0340-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016088034 |
194 | ″ | ″ | https://doi.org/10.1007/s00382-003-0340-6 |
195 | ″ | rdf:type | schema:CreativeWork |
196 | sg:pub.10.1007/s00382-004-0442-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025795726 |
197 | ″ | ″ | https://doi.org/10.1007/s00382-004-0442-9 |
198 | ″ | rdf:type | schema:CreativeWork |
199 | sg:pub.10.1007/s003820000079 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012213043 |
200 | ″ | ″ | https://doi.org/10.1007/s003820000079 |
201 | ″ | rdf:type | schema:CreativeWork |
202 | sg:pub.10.1007/s00704-003-0019-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005594482 |
203 | ″ | ″ | https://doi.org/10.1007/s00704-003-0019-2 |
204 | ″ | rdf:type | schema:CreativeWork |
205 | sg:pub.10.1007/s10584-005-1817-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044592295 |
206 | ″ | ″ | https://doi.org/10.1007/s10584-005-1817-6 |
207 | ″ | rdf:type | schema:CreativeWork |
208 | sg:pub.10.1007/s10584-005-4787-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033008429 |
209 | ″ | ″ | https://doi.org/10.1007/s10584-005-4787-9 |
210 | ″ | rdf:type | schema:CreativeWork |
211 | sg:pub.10.1023/a:1023694115864 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008098197 |
212 | ″ | ″ | https://doi.org/10.1023/a:1023694115864 |
213 | ″ | rdf:type | schema:CreativeWork |
214 | sg:pub.10.1023/a:1026035305597 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035832790 |
215 | ″ | ″ | https://doi.org/10.1023/a:1026035305597 |
216 | ″ | rdf:type | schema:CreativeWork |
217 | sg:pub.10.1038/415512a | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016943344 |
218 | ″ | ″ | https://doi.org/10.1038/415512a |
219 | ″ | rdf:type | schema:CreativeWork |
220 | grid-institutes:grid.1527.1 | schema:alternateName | Bureau of Meteorology Research Centre, Melbourne, Australia |
221 | ″ | schema:name | Bureau of Meteorology Research Centre, Melbourne, Australia |
222 | ″ | ″ | Climate and Global Dynamics Division, NCAR, Boulder, CO, USA |
223 | ″ | rdf:type | schema:Organization |
224 | grid-institutes:grid.264784.b | schema:alternateName | Department of Geosciences, Texas Tech University, Lubbock, TX, USA |
225 | ″ | schema:name | Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA |
226 | ″ | ″ | Department of Geosciences, Texas Tech University, Lubbock, TX, USA |
227 | ″ | rdf:type | schema:Organization |
228 | grid-institutes:grid.57828.30 | schema:alternateName | Climate and Global Dynamics Division, NCAR, Boulder, CO, USA |
229 | ″ | ″ | Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA |
230 | ″ | schema:name | Climate and Global Dynamics Division, NCAR, Boulder, CO, USA |
231 | ″ | ″ | Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA |
232 | ″ | rdf:type | schema:Organization |