Going to the Extremes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-10-10

AUTHORS

Claudia Tebaldi, Katharinec Hayhoe, Julie M. Arblaster, Gerald A. Meehl

ABSTRACT

Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments. More... »

PAGES

185-211

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4

DOI

http://dx.doi.org/10.1007/s10584-006-9051-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033458924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tebaldi", 
        "givenName": "Claudia", 
        "id": "sg:person.015561030205.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561030205.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geosciences, Texas Tech University, Lubbock, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264784.b", 
          "name": [
            "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA", 
            "Department of Geosciences, Texas Tech University, Lubbock, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayhoe", 
        "givenName": "Katharinec", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bureau of Meteorology Research Centre, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1527.1", 
          "name": [
            "Climate and Global Dynamics Division, NCAR, Boulder, CO, USA", 
            "Bureau of Meteorology Research Centre, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arblaster", 
        "givenName": "Julie M.", 
        "id": "sg:person.011452203137.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452203137.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Global Dynamics Division, NCAR, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "Climate and Global Dynamics Division, NCAR, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meehl", 
        "givenName": "Gerald A.", 
        "id": "sg:person.0667652200.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667652200.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10584-005-4787-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033008429", 
          "https://doi.org/10.1007/s10584-005-4787-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-002-0249-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049125383", 
          "https://doi.org/10.1007/s00382-002-0249-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001799095", 
          "https://doi.org/10.1007/s00382-003-0339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012213043", 
          "https://doi.org/10.1007/s003820000079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-005-1817-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044592295", 
          "https://doi.org/10.1007/s10584-005-1817-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415512a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016943344", 
          "https://doi.org/10.1038/415512a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023694115864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008098197", 
          "https://doi.org/10.1023/a:1023694115864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-003-0019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005594482", 
          "https://doi.org/10.1007/s00704-003-0019-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026035305597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035832790", 
          "https://doi.org/10.1023/a:1026035305597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-002-0056-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015537838", 
          "https://doi.org/10.1007/s00376-002-0056-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0442-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025795726", 
          "https://doi.org/10.1007/s00382-004-0442-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0340-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016088034", 
          "https://doi.org/10.1007/s00382-003-0340-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10-10", 
    "datePublishedReg": "2006-10-10", 
    "description": "Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10584-006-9051-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "keywords": [
      "global general circulation model", 
      "climate extremes", 
      "climate change", 
      "heavy rainfall amounts", 
      "individual model projections", 
      "general circulation model", 
      "dry spell length", 
      "Fourth Assessment Report", 
      "projections of changes", 
      "heat wave frequency", 
      "GCM ensemble", 
      "GCM simulations", 
      "circulation model", 
      "Precipitation Index", 
      "precipitation indicators", 
      "rainfall amount", 
      "wetter world", 
      "different emission rates", 
      "emission scenarios", 
      "model projections", 
      "model ensemble", 
      "Intergovernmental Panel", 
      "previous observational studies", 
      "warmer climate", 
      "global average", 
      "Assessment Report", 
      "temperature indices", 
      "future simulations", 
      "regional patterns", 
      "modeling advances", 
      "spatial distribution", 
      "natural systems", 
      "extreme temperatures", 
      "historical trends", 
      "extremes", 
      "emission rates", 
      "greater temperature", 
      "impact assessment", 
      "ensemble", 
      "potential impact", 
      "relative magnitude", 
      "terms of direction", 
      "significant implications", 
      "projections", 
      "first overview", 
      "climate", 
      "trends", 
      "scenarios", 
      "changes", 
      "geographical scales", 
      "substantial differences", 
      "temperature", 
      "occurrence", 
      "magnitude", 
      "indicators", 
      "minor differences", 
      "simulations", 
      "scale", 
      "century", 
      "model", 
      "distribution", 
      "average", 
      "index", 
      "such indicators", 
      "patterns", 
      "impact", 
      "implications", 
      "direction", 
      "agreement", 
      "significance", 
      "range", 
      "amount", 
      "differences", 
      "assessment", 
      "world", 
      "analysis", 
      "rate", 
      "advances", 
      "frequency", 
      "depiction", 
      "system", 
      "study", 
      "terms", 
      "emerge", 
      "opportunities", 
      "overview", 
      "length", 
      "focus", 
      "regard", 
      "consensus", 
      "reliability", 
      "sense", 
      "panel", 
      "observational study", 
      "report", 
      "basic sense"
    ], 
    "name": "Going to the Extremes", 
    "pagination": "185-211", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033458924"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-006-9051-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-006-9051-4", 
      "https://app.dimensions.ai/details/publication/pub.1033458924"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_417.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10584-006-9051-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-006-9051-4'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      22 PREDICATES      133 URIs      113 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-006-9051-4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N0e10539be23a4b75862a14f9755d1e8d
4 schema:citation sg:pub.10.1007/s00376-002-0056-2
5 sg:pub.10.1007/s00382-002-0249-5
6 sg:pub.10.1007/s00382-003-0339-z
7 sg:pub.10.1007/s00382-003-0340-6
8 sg:pub.10.1007/s00382-004-0442-9
9 sg:pub.10.1007/s003820000079
10 sg:pub.10.1007/s00704-003-0019-2
11 sg:pub.10.1007/s10584-005-1817-6
12 sg:pub.10.1007/s10584-005-4787-9
13 sg:pub.10.1023/a:1023694115864
14 sg:pub.10.1023/a:1026035305597
15 sg:pub.10.1038/415512a
16 schema:datePublished 2006-10-10
17 schema:datePublishedReg 2006-10-10
18 schema:description Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Nc7a1b440b9424f5e88332c50dff10fe2
23 Ne39ed4470b6044b7afd2a8b4ece1aea7
24 sg:journal.1028211
25 schema:keywords Assessment Report
26 Fourth Assessment Report
27 GCM ensemble
28 GCM simulations
29 Intergovernmental Panel
30 Precipitation Index
31 advances
32 agreement
33 amount
34 analysis
35 assessment
36 average
37 basic sense
38 century
39 changes
40 circulation model
41 climate
42 climate change
43 climate extremes
44 consensus
45 depiction
46 differences
47 different emission rates
48 direction
49 distribution
50 dry spell length
51 emerge
52 emission rates
53 emission scenarios
54 ensemble
55 extreme temperatures
56 extremes
57 first overview
58 focus
59 frequency
60 future simulations
61 general circulation model
62 geographical scales
63 global average
64 global general circulation model
65 greater temperature
66 heat wave frequency
67 heavy rainfall amounts
68 historical trends
69 impact
70 impact assessment
71 implications
72 index
73 indicators
74 individual model projections
75 length
76 magnitude
77 minor differences
78 model
79 model ensemble
80 model projections
81 modeling advances
82 natural systems
83 observational study
84 occurrence
85 opportunities
86 overview
87 panel
88 patterns
89 potential impact
90 precipitation indicators
91 previous observational studies
92 projections
93 projections of changes
94 rainfall amount
95 range
96 rate
97 regard
98 regional patterns
99 relative magnitude
100 reliability
101 report
102 scale
103 scenarios
104 sense
105 significance
106 significant implications
107 simulations
108 spatial distribution
109 study
110 substantial differences
111 such indicators
112 system
113 temperature
114 temperature indices
115 terms
116 terms of direction
117 trends
118 warmer climate
119 wetter world
120 world
121 schema:name Going to the Extremes
122 schema:pagination 185-211
123 schema:productId N331fdc3b7b8441e29d92949255602cc3
124 N95dcf0d361a2437eb6c5383fd53a3dab
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033458924
126 https://doi.org/10.1007/s10584-006-9051-4
127 schema:sdDatePublished 2022-06-01T22:04
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher N9d608f0e79ba4505bcdd2269bb5a94cd
130 schema:url https://doi.org/10.1007/s10584-006-9051-4
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N0e10539be23a4b75862a14f9755d1e8d rdf:first sg:person.015561030205.29
135 rdf:rest N53a612321cf84472b2dfd88d7a926cd9
136 N26462a8093c244ff887ae3c4298ddd96 rdf:first sg:person.011452203137.38
137 rdf:rest Nf41e44ae39724207a7e09ffe5b5936ec
138 N331fdc3b7b8441e29d92949255602cc3 schema:name doi
139 schema:value 10.1007/s10584-006-9051-4
140 rdf:type schema:PropertyValue
141 N53a612321cf84472b2dfd88d7a926cd9 rdf:first N6799ae1c2f7c4122977b6b6ed3089e89
142 rdf:rest N26462a8093c244ff887ae3c4298ddd96
143 N6799ae1c2f7c4122977b6b6ed3089e89 schema:affiliation grid-institutes:grid.264784.b
144 schema:familyName Hayhoe
145 schema:givenName Katharinec
146 rdf:type schema:Person
147 N95dcf0d361a2437eb6c5383fd53a3dab schema:name dimensions_id
148 schema:value pub.1033458924
149 rdf:type schema:PropertyValue
150 N9d608f0e79ba4505bcdd2269bb5a94cd schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 Nc7a1b440b9424f5e88332c50dff10fe2 schema:volumeNumber 79
153 rdf:type schema:PublicationVolume
154 Ne39ed4470b6044b7afd2a8b4ece1aea7 schema:issueNumber 3-4
155 rdf:type schema:PublicationIssue
156 Nf41e44ae39724207a7e09ffe5b5936ec rdf:first sg:person.0667652200.29
157 rdf:rest rdf:nil
158 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
159 schema:name Earth Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
162 schema:name Atmospheric Sciences
163 rdf:type schema:DefinedTerm
164 sg:journal.1028211 schema:issn 0165-0009
165 1573-1480
166 schema:name Climatic Change
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.011452203137.38 schema:affiliation grid-institutes:grid.1527.1
170 schema:familyName Arblaster
171 schema:givenName Julie M.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452203137.38
173 rdf:type schema:Person
174 sg:person.015561030205.29 schema:affiliation grid-institutes:grid.57828.30
175 schema:familyName Tebaldi
176 schema:givenName Claudia
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561030205.29
178 rdf:type schema:Person
179 sg:person.0667652200.29 schema:affiliation grid-institutes:grid.57828.30
180 schema:familyName Meehl
181 schema:givenName Gerald A.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667652200.29
183 rdf:type schema:Person
184 sg:pub.10.1007/s00376-002-0056-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015537838
185 https://doi.org/10.1007/s00376-002-0056-2
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00382-002-0249-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049125383
188 https://doi.org/10.1007/s00382-002-0249-5
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s00382-003-0339-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001799095
191 https://doi.org/10.1007/s00382-003-0339-z
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s00382-003-0340-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016088034
194 https://doi.org/10.1007/s00382-003-0340-6
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00382-004-0442-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025795726
197 https://doi.org/10.1007/s00382-004-0442-9
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s003820000079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012213043
200 https://doi.org/10.1007/s003820000079
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00704-003-0019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005594482
203 https://doi.org/10.1007/s00704-003-0019-2
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s10584-005-1817-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044592295
206 https://doi.org/10.1007/s10584-005-1817-6
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s10584-005-4787-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033008429
209 https://doi.org/10.1007/s10584-005-4787-9
210 rdf:type schema:CreativeWork
211 sg:pub.10.1023/a:1023694115864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008098197
212 https://doi.org/10.1023/a:1023694115864
213 rdf:type schema:CreativeWork
214 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
215 https://doi.org/10.1023/a:1026035305597
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/415512a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016943344
218 https://doi.org/10.1038/415512a
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.1527.1 schema:alternateName Bureau of Meteorology Research Centre, Melbourne, Australia
221 schema:name Bureau of Meteorology Research Centre, Melbourne, Australia
222 Climate and Global Dynamics Division, NCAR, Boulder, CO, USA
223 rdf:type schema:Organization
224 grid-institutes:grid.264784.b schema:alternateName Department of Geosciences, Texas Tech University, Lubbock, TX, USA
225 schema:name Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
226 Department of Geosciences, Texas Tech University, Lubbock, TX, USA
227 rdf:type schema:Organization
228 grid-institutes:grid.57828.30 schema:alternateName Climate and Global Dynamics Division, NCAR, Boulder, CO, USA
229 Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA
230 schema:name Climate and Global Dynamics Division, NCAR, Boulder, CO, USA
231 Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, 80301, Boulder, CO, USA
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...