Avoided level crossings and singular points View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

Ingrid Rotter

ABSTRACT

Avoided crossings of discrete states as well as of resonance states are traced back to the existence of branch points (BPs) which are singular points in the complex energy plane. They cannot be identified with exceptional points. At a BP width bifurcation occurs, different Riemann sheets evolve and the levels do not cross anymore when the system is still further opened. The BPs are physically meaningful: they influence the dynamics of open as well as of closed quantum systems. The geometric phase that arises by encircling a BP, is different from the phase that appears by encircling a diabolic point. This is found to be true even for the two BPs into which the diabolic point is unfolded by opening the system. More... »

PAGES

1167-1172

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10582-005-0123-x

DOI

http://dx.doi.org/10.1007/s10582-005-0123-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006350446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max-Planck-Institut fur Physik komplexer Systeme, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotter", 
        "givenName": "Ingrid", 
        "id": "sg:person.01014732025.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00366-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008794305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00366-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008794305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.036213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041361109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.036213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041361109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052786864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052786864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.036227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.036227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823321"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-09", 
    "datePublishedReg": "2005-09-01", 
    "description": "Avoided crossings of discrete states as well as of resonance states are traced back to the existence of branch points (BPs) which are singular points in the complex energy plane. They cannot be identified with exceptional points. At a BP width bifurcation occurs, different Riemann sheets evolve and the levels do not cross anymore when the system is still further opened. The BPs are physically meaningful: they influence the dynamics of open as well as of closed quantum systems. The geometric phase that arises by encircling a BP, is different from the phase that appears by encircling a diabolic point. This is found to be true even for the two BPs into which the diabolic point is unfolded by opening the system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10582-005-0123-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297212", 
        "issn": [
          "0011-4626", 
          "1572-9486"
        ], 
        "name": "Czechoslovak Journal of Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Avoided level crossings and singular points", 
    "pagination": "1167-1172", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e3fb441cf016692cd5c6f7b9b54aef40b0c7ef566c6081db007a991566ceb0e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10582-005-0123-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006350446"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10582-005-0123-x", 
      "https://app.dimensions.ai/details/publication/pub.1006350446"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10582-005-0123-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10582-005-0123-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10582-005-0123-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10582-005-0123-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10582-005-0123-x'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10582-005-0123-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5e121e52edf64b078abda7ae70f7a7ce
4 schema:citation https://doi.org/10.1016/s0370-1573(02)00366-6
5 https://doi.org/10.1103/physreve.64.036213
6 https://doi.org/10.1103/physreve.69.066201
7 https://doi.org/10.1103/physreve.71.036227
8 https://doi.org/10.1103/physrevlett.86.787
9 schema:datePublished 2005-09
10 schema:datePublishedReg 2005-09-01
11 schema:description Avoided crossings of discrete states as well as of resonance states are traced back to the existence of branch points (BPs) which are singular points in the complex energy plane. They cannot be identified with exceptional points. At a BP width bifurcation occurs, different Riemann sheets evolve and the levels do not cross anymore when the system is still further opened. The BPs are physically meaningful: they influence the dynamics of open as well as of closed quantum systems. The geometric phase that arises by encircling a BP, is different from the phase that appears by encircling a diabolic point. This is found to be true even for the two BPs into which the diabolic point is unfolded by opening the system.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N13ffd84d40fe4c48a2bd98ef0dc23041
16 Nfe6b218b95f0449da97f23affe01bd09
17 sg:journal.1297212
18 schema:name Avoided level crossings and singular points
19 schema:pagination 1167-1172
20 schema:productId N19b61430977d464689030bf3d794fbd4
21 N59d308dd99b140009f0c72b83a1c34c6
22 N93fe71ceb6c64948a6936a9eccaa9749
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006350446
24 https://doi.org/10.1007/s10582-005-0123-x
25 schema:sdDatePublished 2019-04-11T12:23
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N52b5a1756f3b4588a6659de078954b06
28 schema:url http://link.springer.com/10.1007/s10582-005-0123-x
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N13ffd84d40fe4c48a2bd98ef0dc23041 schema:issueNumber 9
33 rdf:type schema:PublicationIssue
34 N19b61430977d464689030bf3d794fbd4 schema:name dimensions_id
35 schema:value pub.1006350446
36 rdf:type schema:PropertyValue
37 N52b5a1756f3b4588a6659de078954b06 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N59d308dd99b140009f0c72b83a1c34c6 schema:name doi
40 schema:value 10.1007/s10582-005-0123-x
41 rdf:type schema:PropertyValue
42 N5e121e52edf64b078abda7ae70f7a7ce rdf:first sg:person.01014732025.58
43 rdf:rest rdf:nil
44 N93fe71ceb6c64948a6936a9eccaa9749 schema:name readcube_id
45 schema:value 1e3fb441cf016692cd5c6f7b9b54aef40b0c7ef566c6081db007a991566ceb0e
46 rdf:type schema:PropertyValue
47 Nfe6b218b95f0449da97f23affe01bd09 schema:volumeNumber 55
48 rdf:type schema:PublicationVolume
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1297212 schema:issn 0011-4626
56 1572-9486
57 schema:name Czechoslovak Journal of Physics
58 rdf:type schema:Periodical
59 sg:person.01014732025.58 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
60 schema:familyName Rotter
61 schema:givenName Ingrid
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58
63 rdf:type schema:Person
64 https://doi.org/10.1016/s0370-1573(02)00366-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008794305
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1103/physreve.64.036213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041361109
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1103/physreve.69.066201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052786864
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1103/physreve.71.036227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732726
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1103/physrevlett.86.787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823321
73 rdf:type schema:CreativeWork
74 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
75 schema:name Max-Planck-Institut fur Physik komplexer Systeme, D-01187, Dresden, Germany
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...