Robust semantic text similarity using LSA, machine learning, and linguistic resources View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-30

AUTHORS

Abhay Kashyap, Lushan Han, Roberto Yus, Jennifer Sleeman, Taneeya Satyapanich, Sunil Gandhi, Tim Finin

ABSTRACT

Semantic textual similarity is a measure of the degree of semantic equivalence between two pieces of text. We describe the SemSim system and its performance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity. At the core of our system lies a robust distributional word similarity component that combines latent semantic analysis and machine learning augmented with data from several linguistic resources. We used a simple term alignment algorithm to handle longer pieces of text. Additional wrappers and resources were used to handle task specific challenges that include processing Spanish text, comparing text sequences of different lengths, handling informal words and phrases, and matching words with sense definitions. In the *SEM 2013 task on Semantic Textual Similarity, our best performing system ranked first among the 89 submitted runs. In the SemEval-2014 task on Multilingual Semantic Textual Similarity, we ranked a close second in both the English and Spanish subtasks. In the SemEval-2014 task on Cross-Level Semantic Similarity, we ranked first in Sentence–Phrase, Phrase–Word, and Word–Sense subtasks and second in the Paragraph–Sentence subtask. More... »

PAGES

125-161

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10579-015-9319-2

DOI

http://dx.doi.org/10.1007/s10579-015-9319-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040283203


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore County, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "University of Maryland, Baltimore County, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashyap", 
        "givenName": "Abhay", 
        "id": "sg:person.014766613534.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014766613534.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore County, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "University of Maryland, Baltimore County, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Lushan", 
        "id": "sg:person.015564174134.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015564174134.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zaragoza, Zaragoza, Spain", 
          "id": "http://www.grid.ac/institutes/grid.11205.37", 
          "name": [
            "University of Zaragoza, Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yus", 
        "givenName": "Roberto", 
        "id": "sg:person.012120437571.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120437571.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore County, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "University of Maryland, Baltimore County, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sleeman", 
        "givenName": "Jennifer", 
        "id": "sg:person.07656503334.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656503334.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore County, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "University of Maryland, Baltimore County, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Satyapanich", 
        "givenName": "Taneeya", 
        "id": "sg:person.010454063734.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010454063734.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore County, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "University of Maryland, Baltimore County, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandhi", 
        "givenName": "Sunil", 
        "id": "sg:person.011251444334.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011251444334.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore County, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "University of Maryland, Baltimore County, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finin", 
        "givenName": "Tim", 
        "id": "sg:person.016274302751.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274302751.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3758/s13428-011-0183-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015900645", 
          "https://doi.org/10.3758/s13428-011-0183-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71496-5_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030086294", 
          "https://doi.org/10.1007/978-3-540-71496-5_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10579-009-9081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034894249", 
          "https://doi.org/10.1007/s10579-009-9081-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-30", 
    "datePublishedReg": "2015-10-30", 
    "description": "Semantic textual similarity is a measure of the degree of semantic equivalence between two pieces of text. We describe the SemSim system and its performance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity. At the core of our system lies a robust distributional word similarity component that combines latent semantic analysis and machine learning augmented with data from several linguistic resources. We used a simple term alignment algorithm to handle longer pieces of text. Additional wrappers and resources were used to handle task specific challenges that include processing Spanish text, comparing text sequences of different lengths, handling informal words and phrases, and matching words with sense definitions. In the *SEM 2013 task on Semantic Textual Similarity, our best performing system ranked first among the 89 submitted runs. In the SemEval-2014 task on Multilingual Semantic Textual Similarity, we ranked a close second in both the English and Spanish subtasks. In the SemEval-2014 task on Cross-Level Semantic Similarity, we ranked first in Sentence\u2013Phrase, Phrase\u2013Word, and Word\u2013Sense subtasks and second in the Paragraph\u2013Sentence subtask.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10579-015-9319-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3145941", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3101375", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3142081", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294988", 
        "issn": [
          "1574-020X", 
          "1574-0218"
        ], 
        "name": "Language Resources and Evaluation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "keywords": [
      "Semantic Textual Similarity", 
      "linguistic resources", 
      "textual similarity", 
      "semantic text similarity", 
      "piece of text", 
      "Spanish texts", 
      "informal words", 
      "sense definitions", 
      "text", 
      "semantic analysis", 
      "semantic equivalence", 
      "text sequences", 
      "text similarity", 
      "best performing system", 
      "Latent Semantic Analysis", 
      "long pieces", 
      "words", 
      "similarity component", 
      "semantic similarity", 
      "phrases", 
      "pieces", 
      "learning", 
      "specific challenges", 
      "task", 
      "similarity", 
      "resources", 
      "LSA", 
      "definition", 
      "equivalence", 
      "alignment algorithm", 
      "subtasks", 
      "challenges", 
      "machine learning", 
      "wrapper", 
      "analysis", 
      "degree", 
      "core", 
      "system", 
      "performance", 
      "measures", 
      "data", 
      "run", 
      "components", 
      "different lengths", 
      "sequence", 
      "length", 
      "algorithm", 
      "SemSim system", 
      "SEM 2013", 
      "SemEval-2014 task", 
      "robust distributional word similarity component", 
      "distributional word similarity component", 
      "word similarity component", 
      "simple term alignment algorithm", 
      "term alignment algorithm", 
      "Additional wrappers", 
      "task specific challenges", 
      "SEM 2013 task", 
      "performing system", 
      "Multilingual Semantic Textual Similarity", 
      "Spanish subtasks", 
      "Cross-Level Semantic Similarity", 
      "Sentence\u2013Phrase", 
      "Phrase\u2013Word", 
      "Word\u2013Sense subtasks", 
      "Paragraph\u2013Sentence subtask", 
      "Robust semantic text similarity"
    ], 
    "name": "Robust semantic text similarity using LSA, machine learning, and linguistic resources", 
    "pagination": "125-161", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040283203"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10579-015-9319-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10579-015-9319-2", 
      "https://app.dimensions.ai/details/publication/pub.1040283203"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_653.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10579-015-9319-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10579-015-9319-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10579-015-9319-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10579-015-9319-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10579-015-9319-2'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      22 PREDICATES      98 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10579-015-9319-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0804
4 anzsrc-for:17
5 anzsrc-for:1702
6 schema:author Nfb30535a46eb40c190d6a452fb0ce1ed
7 schema:citation sg:pub.10.1007/978-3-540-71496-5_5
8 sg:pub.10.1007/s10579-009-9081-4
9 sg:pub.10.3758/s13428-011-0183-8
10 schema:datePublished 2015-10-30
11 schema:datePublishedReg 2015-10-30
12 schema:description Semantic textual similarity is a measure of the degree of semantic equivalence between two pieces of text. We describe the SemSim system and its performance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity. At the core of our system lies a robust distributional word similarity component that combines latent semantic analysis and machine learning augmented with data from several linguistic resources. We used a simple term alignment algorithm to handle longer pieces of text. Additional wrappers and resources were used to handle task specific challenges that include processing Spanish text, comparing text sequences of different lengths, handling informal words and phrases, and matching words with sense definitions. In the *SEM 2013 task on Semantic Textual Similarity, our best performing system ranked first among the 89 submitted runs. In the SemEval-2014 task on Multilingual Semantic Textual Similarity, we ranked a close second in both the English and Spanish subtasks. In the SemEval-2014 task on Cross-Level Semantic Similarity, we ranked first in Sentence–Phrase, Phrase–Word, and Word–Sense subtasks and second in the Paragraph–Sentence subtask.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N45f93d611525453c84c259d872216bf8
17 Nb6c4d2339b3d455d9e8474fff62af214
18 sg:journal.1294988
19 schema:keywords Additional wrappers
20 Cross-Level Semantic Similarity
21 LSA
22 Latent Semantic Analysis
23 Multilingual Semantic Textual Similarity
24 Paragraph–Sentence subtask
25 Phrase–Word
26 Robust semantic text similarity
27 SEM 2013
28 SEM 2013 task
29 SemEval-2014 task
30 SemSim system
31 Semantic Textual Similarity
32 Sentence–Phrase
33 Spanish subtasks
34 Spanish texts
35 Word–Sense subtasks
36 algorithm
37 alignment algorithm
38 analysis
39 best performing system
40 challenges
41 components
42 core
43 data
44 definition
45 degree
46 different lengths
47 distributional word similarity component
48 equivalence
49 informal words
50 learning
51 length
52 linguistic resources
53 long pieces
54 machine learning
55 measures
56 performance
57 performing system
58 phrases
59 piece of text
60 pieces
61 resources
62 robust distributional word similarity component
63 run
64 semantic analysis
65 semantic equivalence
66 semantic similarity
67 semantic text similarity
68 sense definitions
69 sequence
70 similarity
71 similarity component
72 simple term alignment algorithm
73 specific challenges
74 subtasks
75 system
76 task
77 task specific challenges
78 term alignment algorithm
79 text
80 text sequences
81 text similarity
82 textual similarity
83 word similarity component
84 words
85 wrapper
86 schema:name Robust semantic text similarity using LSA, machine learning, and linguistic resources
87 schema:pagination 125-161
88 schema:productId N3d287cdb96c541f0bad2ca125da4c434
89 N6be8aea29b72432ca7a884e5a01abf84
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040283203
91 https://doi.org/10.1007/s10579-015-9319-2
92 schema:sdDatePublished 2022-01-01T18:36
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N5cc6a1ce39704a8896454765705ca889
95 schema:url https://doi.org/10.1007/s10579-015-9319-2
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N2152594af06b44fda649759fde64b48f rdf:first sg:person.07656503334.55
100 rdf:rest N93c3e4528c5c41d2bb663abc5d67d8a9
101 N3d287cdb96c541f0bad2ca125da4c434 schema:name dimensions_id
102 schema:value pub.1040283203
103 rdf:type schema:PropertyValue
104 N45f93d611525453c84c259d872216bf8 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N5cc6a1ce39704a8896454765705ca889 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N5e1d7afab35e4220a667c9b9fd1bc481 rdf:first sg:person.012120437571.39
109 rdf:rest N2152594af06b44fda649759fde64b48f
110 N67a815037eb84dfdb44048e86d57ffaf rdf:first sg:person.016274302751.69
111 rdf:rest rdf:nil
112 N6be8aea29b72432ca7a884e5a01abf84 schema:name doi
113 schema:value 10.1007/s10579-015-9319-2
114 rdf:type schema:PropertyValue
115 N7fa73e9dcab3426b81f19c4064c21eac rdf:first sg:person.015564174134.37
116 rdf:rest N5e1d7afab35e4220a667c9b9fd1bc481
117 N93c3e4528c5c41d2bb663abc5d67d8a9 rdf:first sg:person.010454063734.15
118 rdf:rest Ndc5b3d1aac414ce3ab76cf74946db332
119 Nb6c4d2339b3d455d9e8474fff62af214 schema:volumeNumber 50
120 rdf:type schema:PublicationVolume
121 Ndc5b3d1aac414ce3ab76cf74946db332 rdf:first sg:person.011251444334.30
122 rdf:rest N67a815037eb84dfdb44048e86d57ffaf
123 Nfb30535a46eb40c190d6a452fb0ce1ed rdf:first sg:person.014766613534.77
124 rdf:rest N7fa73e9dcab3426b81f19c4064c21eac
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
129 schema:name Artificial Intelligence and Image Processing
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
132 schema:name Data Format
133 rdf:type schema:DefinedTerm
134 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
135 schema:name Psychology and Cognitive Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
138 schema:name Cognitive Sciences
139 rdf:type schema:DefinedTerm
140 sg:grant.3101375 http://pending.schema.org/fundedItem sg:pub.10.1007/s10579-015-9319-2
141 rdf:type schema:MonetaryGrant
142 sg:grant.3142081 http://pending.schema.org/fundedItem sg:pub.10.1007/s10579-015-9319-2
143 rdf:type schema:MonetaryGrant
144 sg:grant.3145941 http://pending.schema.org/fundedItem sg:pub.10.1007/s10579-015-9319-2
145 rdf:type schema:MonetaryGrant
146 sg:journal.1294988 schema:issn 1574-020X
147 1574-0218
148 schema:name Language Resources and Evaluation
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.010454063734.15 schema:affiliation grid-institutes:grid.266673.0
152 schema:familyName Satyapanich
153 schema:givenName Taneeya
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010454063734.15
155 rdf:type schema:Person
156 sg:person.011251444334.30 schema:affiliation grid-institutes:grid.266673.0
157 schema:familyName Gandhi
158 schema:givenName Sunil
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011251444334.30
160 rdf:type schema:Person
161 sg:person.012120437571.39 schema:affiliation grid-institutes:grid.11205.37
162 schema:familyName Yus
163 schema:givenName Roberto
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120437571.39
165 rdf:type schema:Person
166 sg:person.014766613534.77 schema:affiliation grid-institutes:grid.266673.0
167 schema:familyName Kashyap
168 schema:givenName Abhay
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014766613534.77
170 rdf:type schema:Person
171 sg:person.015564174134.37 schema:affiliation grid-institutes:grid.266673.0
172 schema:familyName Han
173 schema:givenName Lushan
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015564174134.37
175 rdf:type schema:Person
176 sg:person.016274302751.69 schema:affiliation grid-institutes:grid.266673.0
177 schema:familyName Finin
178 schema:givenName Tim
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274302751.69
180 rdf:type schema:Person
181 sg:person.07656503334.55 schema:affiliation grid-institutes:grid.266673.0
182 schema:familyName Sleeman
183 schema:givenName Jennifer
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656503334.55
185 rdf:type schema:Person
186 sg:pub.10.1007/978-3-540-71496-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030086294
187 https://doi.org/10.1007/978-3-540-71496-5_5
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s10579-009-9081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034894249
190 https://doi.org/10.1007/s10579-009-9081-4
191 rdf:type schema:CreativeWork
192 sg:pub.10.3758/s13428-011-0183-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015900645
193 https://doi.org/10.3758/s13428-011-0183-8
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.11205.37 schema:alternateName University of Zaragoza, Zaragoza, Spain
196 schema:name University of Zaragoza, Zaragoza, Spain
197 rdf:type schema:Organization
198 grid-institutes:grid.266673.0 schema:alternateName University of Maryland, Baltimore County, MD, USA
199 schema:name University of Maryland, Baltimore County, MD, USA
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...