Optimization of the Thrust Performance of a Pulsed Detonation Engine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

V. A. Levin, I. S. Manuilovich, V. V. Markov

ABSTRACT

The problem of modeling the operation cycle of a pulse detonation engine and estimating its highest possible thrust performance is considered. Self-similar and non-self-similar flows in an axisymmetric duct of finite length and variable cross section which arise from detonation propagation from the closed end of the duct are studied for the model of an infinitely thin detonation wave. Analytical and numerical methods are used. Dependences of the average impulse and the average specific impulse on the shape of the side wall of the duct are investigated. The optimal shapes corresponding to the highest thrust performance of the operation cycle are found. More... »

PAGES

418-425

References to SciGraph publications

  • 2004-07. Thrust Performance of an Ideal Pulse Detonation Engine in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10573-010-0056-y

    DOI

    http://dx.doi.org/10.1007/s10573-010-0056-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041386861


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Mechanics, Moscow State University, 119192, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Institute of Mechanics, Moscow State University, 119192, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levin", 
            "givenName": "V. A.", 
            "id": "sg:person.011605070133.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011605070133.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mechanics, Moscow State University, 119192, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Institute of Mechanics, Moscow State University, 119192, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manuilovich", 
            "givenName": "I. S.", 
            "id": "sg:person.07447375427.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447375427.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mechanics, Moscow State University, 119192, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Institute of Mechanics, Moscow State University, 119192, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Markov", 
            "givenName": "V. V.", 
            "id": "sg:person.011201217153.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011201217153.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:cesw.0000033559.75292.8e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014004248", 
              "https://doi.org/10.1023/b:cesw.0000033559.75292.8e"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-07", 
        "datePublishedReg": "2010-07-01", 
        "description": "The problem of modeling the operation cycle of a pulse detonation engine and estimating its highest possible thrust performance is considered. Self-similar and non-self-similar flows in an axisymmetric duct of finite length and variable cross section which arise from detonation propagation from the closed end of the duct are studied for the model of an infinitely thin detonation wave. Analytical and numerical methods are used. Dependences of the average impulse and the average specific impulse on the shape of the side wall of the duct are investigated. The optimal shapes corresponding to the highest thrust performance of the operation cycle are found.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10573-010-0056-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049027", 
            "issn": [
              "0010-5082", 
              "1573-8345"
            ], 
            "name": "Combustion, Explosion, and Shock Waves", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "46"
          }
        ], 
        "keywords": [
          "higher thrust performance", 
          "numerical method", 
          "variable cross section", 
          "optimal shape", 
          "axisymmetric duct", 
          "finite length", 
          "average specific impulse", 
          "average impulse", 
          "operation cycle", 
          "similar flow", 
          "optimization", 
          "thrust performance", 
          "detonation engine", 
          "problem", 
          "performance", 
          "pulse detonation engine", 
          "specific impulse", 
          "side walls", 
          "model", 
          "detonation wave", 
          "detonation propagation", 
          "impulses", 
          "flow", 
          "closed end", 
          "propagation", 
          "engine", 
          "shape", 
          "waves", 
          "cross sections", 
          "dependence", 
          "cycle", 
          "wall", 
          "end", 
          "length", 
          "duct", 
          "sections", 
          "method", 
          "highest possible thrust performance", 
          "possible thrust performance", 
          "thin detonation wave"
        ], 
        "name": "Optimization of the Thrust Performance of a Pulsed Detonation Engine", 
        "pagination": "418-425", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041386861"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10573-010-0056-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10573-010-0056-y", 
          "https://app.dimensions.ai/details/publication/pub.1041386861"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_517.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10573-010-0056-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10573-010-0056-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10573-010-0056-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10573-010-0056-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10573-010-0056-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    120 TRIPLES      22 PREDICATES      68 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10573-010-0056-y schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:0913
    4 schema:author N48eab7a120d64a228a96d208711b1507
    5 schema:citation sg:pub.10.1023/b:cesw.0000033559.75292.8e
    6 schema:datePublished 2010-07
    7 schema:datePublishedReg 2010-07-01
    8 schema:description The problem of modeling the operation cycle of a pulse detonation engine and estimating its highest possible thrust performance is considered. Self-similar and non-self-similar flows in an axisymmetric duct of finite length and variable cross section which arise from detonation propagation from the closed end of the duct are studied for the model of an infinitely thin detonation wave. Analytical and numerical methods are used. Dependences of the average impulse and the average specific impulse on the shape of the side wall of the duct are investigated. The optimal shapes corresponding to the highest thrust performance of the operation cycle are found.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N4d5b30a75c7341cb9f80d23ac3763c11
    13 N700926a26e4f402097d45f214b76f31c
    14 sg:journal.1049027
    15 schema:keywords average impulse
    16 average specific impulse
    17 axisymmetric duct
    18 closed end
    19 cross sections
    20 cycle
    21 dependence
    22 detonation engine
    23 detonation propagation
    24 detonation wave
    25 duct
    26 end
    27 engine
    28 finite length
    29 flow
    30 higher thrust performance
    31 highest possible thrust performance
    32 impulses
    33 length
    34 method
    35 model
    36 numerical method
    37 operation cycle
    38 optimal shape
    39 optimization
    40 performance
    41 possible thrust performance
    42 problem
    43 propagation
    44 pulse detonation engine
    45 sections
    46 shape
    47 side walls
    48 similar flow
    49 specific impulse
    50 thin detonation wave
    51 thrust performance
    52 variable cross section
    53 wall
    54 waves
    55 schema:name Optimization of the Thrust Performance of a Pulsed Detonation Engine
    56 schema:pagination 418-425
    57 schema:productId N4d08ac03483c48c6910efc35699496b9
    58 Nade808d91671494abbbcbbbe2e5e35df
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041386861
    60 https://doi.org/10.1007/s10573-010-0056-y
    61 schema:sdDatePublished 2021-12-01T19:23
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Nfd49b0dfae354cfd9bb8d989f8e58f48
    64 schema:url https://doi.org/10.1007/s10573-010-0056-y
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N48eab7a120d64a228a96d208711b1507 rdf:first sg:person.011605070133.24
    69 rdf:rest Ncd1c6c72452f42bb8a271569da32fb2b
    70 N4d08ac03483c48c6910efc35699496b9 schema:name doi
    71 schema:value 10.1007/s10573-010-0056-y
    72 rdf:type schema:PropertyValue
    73 N4d5b30a75c7341cb9f80d23ac3763c11 schema:volumeNumber 46
    74 rdf:type schema:PublicationVolume
    75 N700926a26e4f402097d45f214b76f31c schema:issueNumber 4
    76 rdf:type schema:PublicationIssue
    77 N7e57067a62a44ee7aadf94f6a5e977bb rdf:first sg:person.011201217153.09
    78 rdf:rest rdf:nil
    79 Nade808d91671494abbbcbbbe2e5e35df schema:name dimensions_id
    80 schema:value pub.1041386861
    81 rdf:type schema:PropertyValue
    82 Ncd1c6c72452f42bb8a271569da32fb2b rdf:first sg:person.07447375427.38
    83 rdf:rest N7e57067a62a44ee7aadf94f6a5e977bb
    84 Nfd49b0dfae354cfd9bb8d989f8e58f48 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Engineering
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Chemical Engineering
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Mechanical Engineering
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1049027 schema:issn 0010-5082
    96 1573-8345
    97 schema:name Combustion, Explosion, and Shock Waves
    98 schema:publisher Springer Nature
    99 rdf:type schema:Periodical
    100 sg:person.011201217153.09 schema:affiliation grid-institutes:grid.14476.30
    101 schema:familyName Markov
    102 schema:givenName V. V.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011201217153.09
    104 rdf:type schema:Person
    105 sg:person.011605070133.24 schema:affiliation grid-institutes:grid.14476.30
    106 schema:familyName Levin
    107 schema:givenName V. A.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011605070133.24
    109 rdf:type schema:Person
    110 sg:person.07447375427.38 schema:affiliation grid-institutes:grid.14476.30
    111 schema:familyName Manuilovich
    112 schema:givenName I. S.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447375427.38
    114 rdf:type schema:Person
    115 sg:pub.10.1023/b:cesw.0000033559.75292.8e schema:sameAs https://app.dimensions.ai/details/publication/pub.1014004248
    116 https://doi.org/10.1023/b:cesw.0000033559.75292.8e
    117 rdf:type schema:CreativeWork
    118 grid-institutes:grid.14476.30 schema:alternateName Institute of Mechanics, Moscow State University, 119192, Moscow, Russia
    119 schema:name Institute of Mechanics, Moscow State University, 119192, Moscow, Russia
    120 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...