Explosive characteristics of aluminized HMX-based nanocomposites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-03

AUTHORS

M. F. Gogulya, M. N. Makhov, M. A. Brazhnikov, A. Yu. Dolgoborodov, V. I. Arkhipov, A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov

ABSTRACT

The explosive characteristics of HMX compositions doped with 15% Al (by weight) were studied experimentally. The detonation velocity, pressure and temperature profiles, the velocity of endwise acceleration of plates, and the heat of explosion of dense pressed samples were measured. The results were compared for compositions based on mechanical mixtures of initial micron-size particles of HMX with aluminum powders of various sizes and for nanocomposites. The addition of nanoaluminum reduces the detonation velocity to a greater degree than the addition of micron-size aluminum. The mechanical mixtures have close detonation velocities, whereas in composites containing different types of nanoaluminum, they differ by almost 200 m/sec. For all compositions, except for the most homogeneous nanocomposite, two-peak pressure profiles are observed. For charges of a composite and a mechanical mixture with nanoaluminum of the same type, the second peak pressures almost coincide but are reached in different times. At the same time, the peak pressure increases with decreasing aluminum particle size. The temperature profiles agree qualitatively with the pressure profiles. The velocity of endwise acceleration of plates depends linearly on the activity of the aluminum powder used. Nanocomposites and mechanical mixtures containing the same aluminum powder have close heats of explosion. Nanoaluminum is almost completely oxidized during calorimeter bomb tests, and the major factor determining the heat of explosion of the compositions with nanoaluminum is also the content of active metal in the aluminum powder. More... »

PAGES

198-212

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10573-008-0027-8

DOI

http://dx.doi.org/10.1007/s10573-008-0027-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021812371


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gogulya", 
        "givenName": "M. F.", 
        "id": "sg:person.016077256465.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077256465.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhov", 
        "givenName": "M. N.", 
        "id": "sg:person.014542320205.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542320205.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brazhnikov", 
        "givenName": "M. A.", 
        "id": "sg:person.015353652365.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015353652365.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolgoborodov", 
        "givenName": "A. Yu.", 
        "id": "sg:person.011250111160.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250111160.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arkhipov", 
        "givenName": "V. I.", 
        "id": "sg:person.012467644774.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012467644774.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Energetic Problems of Chemical Physics, Russian Academy of Sciences, 119334, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhigach", 
        "givenName": "A. N.", 
        "id": "sg:person.01257745366.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257745366.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Energetic Problems of Chemical Physics, Russian Academy of Sciences, 119334, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leipunskii", 
        "givenName": "I. O.", 
        "id": "sg:person.01326060566.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326060566.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Energetic Problems of Chemical Physics, Russian Academy of Sciences, 119334, Moscow"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuskov", 
        "givenName": "M. L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10595-005-0068-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005402122", 
          "https://doi.org/10.1007/s10595-005-0068-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10595-005-0068-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005402122", 
          "https://doi.org/10.1007/s10595-005-0068-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:cesw.0000033569.77449.d9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010556638", 
          "https://doi.org/10.1023/b:cesw.0000033569.77449.d9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:cesw.0000033568.39812.2c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018865853", 
          "https://doi.org/10.1023/b:cesw.0000033568.39812.2c"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02674504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041706086", 
          "https://doi.org/10.1007/bf02674504"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03", 
    "datePublishedReg": "2008-03-01", 
    "description": "The explosive characteristics of HMX compositions doped with 15% Al (by weight) were studied experimentally. The detonation velocity, pressure and temperature profiles, the velocity of endwise acceleration of plates, and the heat of explosion of dense pressed samples were measured. The results were compared for compositions based on mechanical mixtures of initial micron-size particles of HMX with aluminum powders of various sizes and for nanocomposites. The addition of nanoaluminum reduces the detonation velocity to a greater degree than the addition of micron-size aluminum. The mechanical mixtures have close detonation velocities, whereas in composites containing different types of nanoaluminum, they differ by almost 200 m/sec. For all compositions, except for the most homogeneous nanocomposite, two-peak pressure profiles are observed. For charges of a composite and a mechanical mixture with nanoaluminum of the same type, the second peak pressures almost coincide but are reached in different times. At the same time, the peak pressure increases with decreasing aluminum particle size. The temperature profiles agree qualitatively with the pressure profiles. The velocity of endwise acceleration of plates depends linearly on the activity of the aluminum powder used. Nanocomposites and mechanical mixtures containing the same aluminum powder have close heats of explosion. Nanoaluminum is almost completely oxidized during calorimeter bomb tests, and the major factor determining the heat of explosion of the compositions with nanoaluminum is also the content of active metal in the aluminum powder.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10573-008-0027-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049027", 
        "issn": [
          "0010-5082", 
          "1573-8345"
        ], 
        "name": "Combustion, Explosion, and Shock Waves", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Explosive characteristics of aluminized HMX-based nanocomposites", 
    "pagination": "198-212", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67ebe5f2cb2ea90bc6b62f070dd905e21203a9985543a62f1f70e10bb4311b18"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10573-008-0027-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021812371"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10573-008-0027-8", 
      "https://app.dimensions.ai/details/publication/pub.1021812371"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13090_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10573-008-0027-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10573-008-0027-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10573-008-0027-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10573-008-0027-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10573-008-0027-8'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10573-008-0027-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd80489f7b70b4e489a0adbea2a6a7798
4 schema:citation sg:pub.10.1007/bf02674504
5 sg:pub.10.1007/s10595-005-0068-6
6 sg:pub.10.1023/b:cesw.0000033568.39812.2c
7 sg:pub.10.1023/b:cesw.0000033569.77449.d9
8 schema:datePublished 2008-03
9 schema:datePublishedReg 2008-03-01
10 schema:description The explosive characteristics of HMX compositions doped with 15% Al (by weight) were studied experimentally. The detonation velocity, pressure and temperature profiles, the velocity of endwise acceleration of plates, and the heat of explosion of dense pressed samples were measured. The results were compared for compositions based on mechanical mixtures of initial micron-size particles of HMX with aluminum powders of various sizes and for nanocomposites. The addition of nanoaluminum reduces the detonation velocity to a greater degree than the addition of micron-size aluminum. The mechanical mixtures have close detonation velocities, whereas in composites containing different types of nanoaluminum, they differ by almost 200 m/sec. For all compositions, except for the most homogeneous nanocomposite, two-peak pressure profiles are observed. For charges of a composite and a mechanical mixture with nanoaluminum of the same type, the second peak pressures almost coincide but are reached in different times. At the same time, the peak pressure increases with decreasing aluminum particle size. The temperature profiles agree qualitatively with the pressure profiles. The velocity of endwise acceleration of plates depends linearly on the activity of the aluminum powder used. Nanocomposites and mechanical mixtures containing the same aluminum powder have close heats of explosion. Nanoaluminum is almost completely oxidized during calorimeter bomb tests, and the major factor determining the heat of explosion of the compositions with nanoaluminum is also the content of active metal in the aluminum powder.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N37ef0b96e7a64e1eb86e2e90ee69bd26
15 N5fe6c7482c024844aa0cc9f9570c20a4
16 sg:journal.1049027
17 schema:name Explosive characteristics of aluminized HMX-based nanocomposites
18 schema:pagination 198-212
19 schema:productId N157f355b57a541ffb29ce363e344bbf4
20 N790f50bd7b8e4c8b835f732b375a269d
21 Nd432ae16ceef4dfc87b5c2f42c1ee7c0
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812371
23 https://doi.org/10.1007/s10573-008-0027-8
24 schema:sdDatePublished 2019-04-11T14:30
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nb5e0fb52dcc54162bcedff3c994f3509
27 schema:url http://link.springer.com/10.1007/s10573-008-0027-8
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N157f355b57a541ffb29ce363e344bbf4 schema:name readcube_id
32 schema:value 67ebe5f2cb2ea90bc6b62f070dd905e21203a9985543a62f1f70e10bb4311b18
33 rdf:type schema:PropertyValue
34 N37ef0b96e7a64e1eb86e2e90ee69bd26 schema:issueNumber 2
35 rdf:type schema:PublicationIssue
36 N3e3425567b714495bb0e9e0bf640fcdf rdf:first sg:person.011250111160.85
37 rdf:rest N86da2fd98aeb449e9229869e5b21a78d
38 N5b11ab83f2264a44980cc55326516a08 rdf:first sg:person.01326060566.20
39 rdf:rest N5f55fa2b39f149d5b3ee339d9ef41929
40 N5f55fa2b39f149d5b3ee339d9ef41929 rdf:first Nf26fe95414e3406abf4070f4231459fd
41 rdf:rest rdf:nil
42 N5fe6c7482c024844aa0cc9f9570c20a4 schema:volumeNumber 44
43 rdf:type schema:PublicationVolume
44 N790f50bd7b8e4c8b835f732b375a269d schema:name dimensions_id
45 schema:value pub.1021812371
46 rdf:type schema:PropertyValue
47 N846e0b62aae04df38f1acacb6b7c0a56 rdf:first sg:person.014542320205.28
48 rdf:rest N8a7e53a73fc94dbdb9c0a7bd3054e497
49 N86da2fd98aeb449e9229869e5b21a78d rdf:first sg:person.012467644774.42
50 rdf:rest Nfbc50e6b082142ab9d87b2fca12b5d65
51 N8a7e53a73fc94dbdb9c0a7bd3054e497 rdf:first sg:person.015353652365.05
52 rdf:rest N3e3425567b714495bb0e9e0bf640fcdf
53 Nb5e0fb52dcc54162bcedff3c994f3509 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nd432ae16ceef4dfc87b5c2f42c1ee7c0 schema:name doi
56 schema:value 10.1007/s10573-008-0027-8
57 rdf:type schema:PropertyValue
58 Nd80489f7b70b4e489a0adbea2a6a7798 rdf:first sg:person.016077256465.60
59 rdf:rest N846e0b62aae04df38f1acacb6b7c0a56
60 Nf26fe95414e3406abf4070f4231459fd schema:affiliation https://www.grid.ac/institutes/grid.4886.2
61 schema:familyName Kuskov
62 schema:givenName M. L.
63 rdf:type schema:Person
64 Nfbc50e6b082142ab9d87b2fca12b5d65 rdf:first sg:person.01257745366.40
65 rdf:rest N5b11ab83f2264a44980cc55326516a08
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1049027 schema:issn 0010-5082
73 1573-8345
74 schema:name Combustion, Explosion, and Shock Waves
75 rdf:type schema:Periodical
76 sg:person.011250111160.85 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Dolgoborodov
78 schema:givenName A. Yu.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250111160.85
80 rdf:type schema:Person
81 sg:person.012467644774.42 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
82 schema:familyName Arkhipov
83 schema:givenName V. I.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012467644774.42
85 rdf:type schema:Person
86 sg:person.01257745366.40 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
87 schema:familyName Zhigach
88 schema:givenName A. N.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257745366.40
90 rdf:type schema:Person
91 sg:person.01326060566.20 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Leipunskii
93 schema:givenName I. O.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326060566.20
95 rdf:type schema:Person
96 sg:person.014542320205.28 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
97 schema:familyName Makhov
98 schema:givenName M. N.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542320205.28
100 rdf:type schema:Person
101 sg:person.015353652365.05 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
102 schema:familyName Brazhnikov
103 schema:givenName M. A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015353652365.05
105 rdf:type schema:Person
106 sg:person.016077256465.60 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
107 schema:familyName Gogulya
108 schema:givenName M. F.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077256465.60
110 rdf:type schema:Person
111 sg:pub.10.1007/bf02674504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041706086
112 https://doi.org/10.1007/bf02674504
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10595-005-0068-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005402122
115 https://doi.org/10.1007/s10595-005-0068-6
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/b:cesw.0000033568.39812.2c schema:sameAs https://app.dimensions.ai/details/publication/pub.1018865853
118 https://doi.org/10.1023/b:cesw.0000033568.39812.2c
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/b:cesw.0000033569.77449.d9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010556638
121 https://doi.org/10.1023/b:cesw.0000033569.77449.d9
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
124 schema:name Institute of Energetic Problems of Chemical Physics, Russian Academy of Sciences, 119334, Moscow
125 Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...