Steady regimes of conversion in a viscoelastic medium View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-09

AUTHORS

A. G. Knyazeva, S. N. Sorokova

ABSTRACT

The problem of propagation of a steady conversion front in a viscoelastic medium is solved by the method of matched asymptotic expansions in the approximation of low strains. The heat flux is assumed to satisfy the Fourier law, and the components of the stress and strain tensors are related by the Maxwell relations including the shear coefficient of viscosity. The temperature of the products and the velocity of propagation of the steady reaction front are found. The solution of the problem is obtained for the limiting cases of the small and large times of relaxation of viscous stresses. It is demonstrated that the model contains different regimes of reaction-front propagation, like the coupled models of solid-phase combustion for a thermoelastic body, and viscous stresses insert additional features. More... »

PAGES

549-558

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10573-006-0087-6

DOI

http://dx.doi.org/10.1007/s10573-006-0087-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040589097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Strength Physics and Material Science, Siberian Division, Russian Academy of Sciences, 634021, Tomsk"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knyazeva", 
        "givenName": "A. G.", 
        "id": "sg:person.015605237135.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Strength Physics and Material Science, Siberian Division, Russian Academy of Sciences, 634021, Tomsk"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorokova", 
        "givenName": "S. N.", 
        "id": "sg:person.016137357730.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137357730.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00756711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013002315", 
          "https://doi.org/10.1007/bf00756711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00756711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013002315", 
          "https://doi.org/10.1007/bf00756711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00756711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013002315", 
          "https://doi.org/10.1007/bf00756711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022580023603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019446845", 
          "https://doi.org/10.1023/a:1022580023603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02699475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026013566", 
          "https://doi.org/10.1007/bf02699475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02699475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026013566", 
          "https://doi.org/10.1007/bf02699475"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-09", 
    "datePublishedReg": "2006-09-01", 
    "description": "The problem of propagation of a steady conversion front in a viscoelastic medium is solved by the method of matched asymptotic expansions in the approximation of low strains. The heat flux is assumed to satisfy the Fourier law, and the components of the stress and strain tensors are related by the Maxwell relations including the shear coefficient of viscosity. The temperature of the products and the velocity of propagation of the steady reaction front are found. The solution of the problem is obtained for the limiting cases of the small and large times of relaxation of viscous stresses. It is demonstrated that the model contains different regimes of reaction-front propagation, like the coupled models of solid-phase combustion for a thermoelastic body, and viscous stresses insert additional features.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10573-006-0087-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049027", 
        "issn": [
          "0010-5082", 
          "1573-8345"
        ], 
        "name": "Combustion, Explosion, and Shock Waves", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Steady regimes of conversion in a viscoelastic medium", 
    "pagination": "549-558", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c159efaef712bac88a73dc28c99c45694d6ab59e99cf478dd74f2e807c2d2666"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10573-006-0087-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040589097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10573-006-0087-6", 
      "https://app.dimensions.ai/details/publication/pub.1040589097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13081_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10573-006-0087-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10573-006-0087-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10573-006-0087-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10573-006-0087-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10573-006-0087-6'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10573-006-0087-6 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nbd3eae1e0a684689a05d3c7889f98e42
4 schema:citation sg:pub.10.1007/bf00756711
5 sg:pub.10.1007/bf02699475
6 sg:pub.10.1023/a:1022580023603
7 schema:datePublished 2006-09
8 schema:datePublishedReg 2006-09-01
9 schema:description The problem of propagation of a steady conversion front in a viscoelastic medium is solved by the method of matched asymptotic expansions in the approximation of low strains. The heat flux is assumed to satisfy the Fourier law, and the components of the stress and strain tensors are related by the Maxwell relations including the shear coefficient of viscosity. The temperature of the products and the velocity of propagation of the steady reaction front are found. The solution of the problem is obtained for the limiting cases of the small and large times of relaxation of viscous stresses. It is demonstrated that the model contains different regimes of reaction-front propagation, like the coupled models of solid-phase combustion for a thermoelastic body, and viscous stresses insert additional features.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N30e8ed0e2e974cc8ae98cc3e56350a76
14 N95a6eabd985d4d44a96b992e15d174b8
15 sg:journal.1049027
16 schema:name Steady regimes of conversion in a viscoelastic medium
17 schema:pagination 549-558
18 schema:productId N44c9bdef7168450db121da2f3cc2f7f5
19 N684f0a7f62c54d7da0c3757add2002ef
20 Nce331959f2b94b39b4fb3477525c819c
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040589097
22 https://doi.org/10.1007/s10573-006-0087-6
23 schema:sdDatePublished 2019-04-11T14:28
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N780bdd8f58de46158bf2e4e198cd4a27
26 schema:url http://link.springer.com/10.1007/s10573-006-0087-6
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N30e8ed0e2e974cc8ae98cc3e56350a76 schema:issueNumber 5
31 rdf:type schema:PublicationIssue
32 N44c9bdef7168450db121da2f3cc2f7f5 schema:name dimensions_id
33 schema:value pub.1040589097
34 rdf:type schema:PropertyValue
35 N684f0a7f62c54d7da0c3757add2002ef schema:name readcube_id
36 schema:value c159efaef712bac88a73dc28c99c45694d6ab59e99cf478dd74f2e807c2d2666
37 rdf:type schema:PropertyValue
38 N780bdd8f58de46158bf2e4e198cd4a27 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N95a6eabd985d4d44a96b992e15d174b8 schema:volumeNumber 42
41 rdf:type schema:PublicationVolume
42 Nb90bc89677e548109ff8b953818f708b rdf:first sg:person.016137357730.83
43 rdf:rest rdf:nil
44 Nbd3eae1e0a684689a05d3c7889f98e42 rdf:first sg:person.015605237135.34
45 rdf:rest Nb90bc89677e548109ff8b953818f708b
46 Nce331959f2b94b39b4fb3477525c819c schema:name doi
47 schema:value 10.1007/s10573-006-0087-6
48 rdf:type schema:PropertyValue
49 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
50 schema:name Engineering
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
53 schema:name Interdisciplinary Engineering
54 rdf:type schema:DefinedTerm
55 sg:journal.1049027 schema:issn 0010-5082
56 1573-8345
57 schema:name Combustion, Explosion, and Shock Waves
58 rdf:type schema:Periodical
59 sg:person.015605237135.34 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
60 schema:familyName Knyazeva
61 schema:givenName A. G.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34
63 rdf:type schema:Person
64 sg:person.016137357730.83 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
65 schema:familyName Sorokova
66 schema:givenName S. N.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137357730.83
68 rdf:type schema:Person
69 sg:pub.10.1007/bf00756711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013002315
70 https://doi.org/10.1007/bf00756711
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf02699475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026013566
73 https://doi.org/10.1007/bf02699475
74 rdf:type schema:CreativeWork
75 sg:pub.10.1023/a:1022580023603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019446845
76 https://doi.org/10.1023/a:1022580023603
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
79 schema:name Institute of Strength Physics and Material Science, Siberian Division, Russian Academy of Sciences, 634021, Tomsk
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...