Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05-06

AUTHORS

Kindness A. Uyanga, Walid A. Daoud

ABSTRACT

The toxicity level of conventional hydrogels is considerably high for most applications. To date, very few studies on hydrogels synthesized using only safe materials and simple, reproducible processes are available in the literature. Moreover, critical information on hydrogels hydrolytic behavior and stability—important parameters to determine microstructure—is missing. Herein, new composite hydrogel matrices are developed using green, sustainable materials through a simple, reproducible low-temperature chemical method. Natural polymers (carboxymethyl cellulose and chitosan), crosslinkers (fumaric acid, citric acid, tartaric acid and zinc ion), and solvent (water) are used. The hydrogels are characterized for degree of crosslinking and microstructure parameters calculated using Flory Rehner equation. Bonding strength and stability of the microstructure are further assessed. With respect to the hydrolytic properties, it was found that CMC~FU~CSN exhibits well-defined microstructure (155% swelling, 79% water absorbency and 82% gel fraction) superior to the other crosslinked hydrogels and the non-crosslinked composite, CMC~CSN. However, its gel fraction was within the same range as CMC~CSN (332% swelling, 91% water absorbency and 79% gel fraction). Other characterization results confirm that CMC~FU~CSN has the optimum microstructure (3 nm mesh size, 261 g/mol molecular weight between crosslinks and 0.01 μmol/cm3 effective crosslinking density), thermal stability (2% mass loss at 50 °C, 3% at 100 °C against 6% at 50 °C, 8% at 100 °C for CMC~CSN), semi-crystalline structure and chemical properties making it preferred over CMC~CSN as a promising green and sustainable hydrogel matrix.Graphic Abstract More... »

PAGES

5493-5512

References to SciGraph publications

  • 2018-05-11. Structure Response for Cellulose-Based Hydrogels Via Characterization Techniques in CELLULOSE-BASED SUPERABSORBENT HYDROGELS
  • 2017-11-08. Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel in CELLULOSE
  • 2014-03-02. Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization in CELLULOSE
  • 2015-03-14. Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films in CELLULOSE
  • 2019-08-12. Preparation of chitosan/curdlan/carboxymethyl cellulose blended film and its characterization in JOURNAL OF FOOD SCIENCE AND TECHNOLOGY
  • 2014-04-05. Photodegradation of methylene blue over novel 3D ZnO microflowers with hexagonal pyramid-like petals in REACTION KINETICS, MECHANISMS AND CATALYSIS
  • 2018-08-25. Polymer Reaction Engineering Tools to Tailor Smart and Superabsorbent Hydrogels in CELLULOSE-BASED SUPERABSORBENT HYDROGELS
  • 2018-02-05. Construction of novel cellulose/chitosan composite hydrogels and films and their applications in CELLULOSE
  • 2019-12-10. Impact of zinc doping on structural, optical, and electrical properties of CdO films prepared by sol–gel screen printing mechanism in JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
  • 2012-05-09. Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application in POLYMER BULLETIN
  • 2013-02-01. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index in CELLULOSE
  • 2019-03-13. Chemical and biological behaviours of hydrogels based on oxidized carboxymethylcellulose coupled to chitosan in POLYMER BULLETIN
  • 2018-05-11. Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects in CELLULOSE-BASED SUPERABSORBENT HYDROGELS
  • 2018-11. Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics in POLYMER SCIENCE, SERIES A
  • 2015-12-31. Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing in CELLULOSE
  • 2011-12-08. Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution in CELLULOSE
  • 2016-02-04. Fumaric acid cross-linked carboxymethylcellulose/poly(vinyl alcohol) hydrogels in POLYMER BULLETIN
  • 2019-01-21. Carboxymethyl cellulose/poly(acrylic acid) interpenetrating polymer network hydrogels as multifunctional adsorbents in CELLULOSE
  • 2014-09-16. Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic studies in CELLULOSE
  • 2018-06-15. Chitosan-Based Hydrogels: Preparation, Properties, and Applications in CELLULOSE-BASED SUPERABSORBENT HYDROGELS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10570-021-03870-2

    DOI

    http://dx.doi.org/10.1007/s10570-021-03870-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1137810155


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong", 
              "id": "http://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uyanga", 
            "givenName": "Kindness A.", 
            "id": "sg:person.014355042144.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014355042144.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong", 
              "id": "http://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daoud", 
            "givenName": "Walid A.", 
            "id": "sg:person.01304775647.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304775647.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13197-019-04010-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120281887", 
              "https://doi.org/10.1007/s13197-019-04010-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11144-014-0703-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020700903", 
              "https://doi.org/10.1007/s11144-014-0703-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-76573-0_19-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106365012", 
              "https://doi.org/10.1007/978-3-319-76573-0_19-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-012-9833-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049844020", 
              "https://doi.org/10.1007/s10570-012-9833-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-018-02232-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111580025", 
              "https://doi.org/10.1007/s10570-018-02232-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-76573-0_9-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104475373", 
              "https://doi.org/10.1007/978-3-319-76573-0_9-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965545x18060044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111953506", 
              "https://doi.org/10.1134/s0965545x18060044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-76573-0_55-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105225012", 
              "https://doi.org/10.1007/978-3-319-76573-0_55-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10971-019-05202-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123261352", 
              "https://doi.org/10.1007/s10971-019-05202-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-018-1683-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100824018", 
              "https://doi.org/10.1007/s10570-018-1683-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-011-9631-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015864054", 
              "https://doi.org/10.1007/s10570-011-9631-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-014-0442-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012031448", 
              "https://doi.org/10.1007/s10570-014-0442-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00289-016-1613-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031198077", 
              "https://doi.org/10.1007/s00289-016-1613-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-017-1557-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092594240", 
              "https://doi.org/10.1007/s10570-017-1557-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00289-019-02712-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112731549", 
              "https://doi.org/10.1007/s00289-019-02712-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-76573-0_27-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104994138", 
              "https://doi.org/10.1007/978-3-319-76573-0_27-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-015-0851-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039505794", 
              "https://doi.org/10.1007/s10570-015-0851-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-014-0204-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005364669", 
              "https://doi.org/10.1007/s10570-014-0204-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-015-0603-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000051657", 
              "https://doi.org/10.1007/s10570-015-0603-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00289-012-0761-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028912135", 
              "https://doi.org/10.1007/s00289-012-0761-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-06", 
        "datePublishedReg": "2021-05-06", 
        "description": "The toxicity level of conventional hydrogels is considerably high for most applications. To date, very few studies on hydrogels synthesized using only safe materials and simple, reproducible processes are available in the literature. Moreover, critical information on hydrogels hydrolytic behavior and stability\u2014important parameters to determine microstructure\u2014is missing. Herein, new composite hydrogel matrices are developed using green, sustainable materials through a simple, reproducible low-temperature chemical method. Natural polymers (carboxymethyl cellulose and chitosan), crosslinkers (fumaric acid, citric acid, tartaric acid and zinc ion), and solvent (water) are used. The hydrogels are characterized for degree of crosslinking and microstructure parameters calculated using Flory Rehner equation. Bonding strength and stability of the microstructure are further assessed. With respect to the hydrolytic properties, it was found that CMC~FU~CSN exhibits well-defined microstructure (155% swelling, 79% water absorbency and 82% gel fraction) superior to the other crosslinked hydrogels and the non-crosslinked composite, CMC~CSN. However, its gel fraction was within the same range as CMC~CSN (332% swelling, 91% water absorbency and 79% gel fraction). Other characterization results confirm that CMC~FU~CSN has the optimum microstructure (3\u00a0nm mesh size, 261\u00a0g/mol molecular weight between crosslinks and 0.01\u00a0\u03bcmol/cm3 effective crosslinking density), thermal stability (2% mass loss at 50 \u00b0C, 3% at 100 \u00b0C against 6% at 50 \u00b0C, 8% at 100 \u00b0C for CMC~CSN), semi-crystalline structure and chemical properties making it preferred over CMC~CSN as a promising green and sustainable hydrogel matrix.Graphic Abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10570-021-03870-2", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9307999", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033767", 
            "issn": [
              "0969-0239", 
              "1572-882X"
            ], 
            "name": "Cellulose", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "keywords": [
          "hydrogel matrix", 
          "low-temperature chemical method", 
          "effect of crosslinker", 
          "semi-crystalline structure", 
          "composite hydrogel matrix", 
          "degree of crosslinking", 
          "Flory-Rehner equation", 
          "natural polymers", 
          "chemical methods", 
          "gel fraction", 
          "hydrolytic behavior", 
          "characterization results", 
          "chemical properties", 
          "optimum microstructure", 
          "conventional hydrogels", 
          "thermal stability", 
          "hydrogels", 
          "composite hydrogels", 
          "sustainable materials", 
          "bonding strength", 
          "microstructure parameters", 
          "safe material", 
          "crosslinker", 
          "microstructure", 
          "hydrolytic properties", 
          "CMC", 
          "toxicity levels", 
          "reproducible process", 
          "polymers", 
          "stability", 
          "solvent", 
          "most applications", 
          "properties", 
          "materials", 
          "crosslinking", 
          "Herein", 
          "Abstract Green", 
          "matrix", 
          "parameters", 
          "same range", 
          "strength", 
          "structure", 
          "CSN", 
          "green", 
          "applications", 
          "equations", 
          "behavior", 
          "range", 
          "process", 
          "fraction", 
          "method", 
          "critical information", 
          "results", 
          "respect", 
          "effect", 
          "degree", 
          "study", 
          "information", 
          "FU", 
          "literature", 
          "levels", 
          "date"
        ], 
        "name": "Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure", 
        "pagination": "5493-5512", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1137810155"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10570-021-03870-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10570-021-03870-2", 
          "https://app.dimensions.ai/details/publication/pub.1137810155"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_886.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10570-021-03870-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10570-021-03870-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10570-021-03870-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10570-021-03870-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10570-021-03870-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    216 TRIPLES      21 PREDICATES      108 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10570-021-03870-2 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 schema:author Nea55fd851af24e2db193a1b9eab02fb8
    6 schema:citation sg:pub.10.1007/978-3-319-76573-0_19-2
    7 sg:pub.10.1007/978-3-319-76573-0_27-1
    8 sg:pub.10.1007/978-3-319-76573-0_55-1
    9 sg:pub.10.1007/978-3-319-76573-0_9-1
    10 sg:pub.10.1007/s00289-012-0761-7
    11 sg:pub.10.1007/s00289-016-1613-7
    12 sg:pub.10.1007/s00289-019-02712-3
    13 sg:pub.10.1007/s10570-011-9631-y
    14 sg:pub.10.1007/s10570-012-9833-y
    15 sg:pub.10.1007/s10570-014-0204-8
    16 sg:pub.10.1007/s10570-014-0442-9
    17 sg:pub.10.1007/s10570-015-0603-5
    18 sg:pub.10.1007/s10570-015-0851-4
    19 sg:pub.10.1007/s10570-017-1557-6
    20 sg:pub.10.1007/s10570-018-02232-9
    21 sg:pub.10.1007/s10570-018-1683-9
    22 sg:pub.10.1007/s10971-019-05202-0
    23 sg:pub.10.1007/s11144-014-0703-5
    24 sg:pub.10.1007/s13197-019-04010-2
    25 sg:pub.10.1134/s0965545x18060044
    26 schema:datePublished 2021-05-06
    27 schema:datePublishedReg 2021-05-06
    28 schema:description The toxicity level of conventional hydrogels is considerably high for most applications. To date, very few studies on hydrogels synthesized using only safe materials and simple, reproducible processes are available in the literature. Moreover, critical information on hydrogels hydrolytic behavior and stability—important parameters to determine microstructure—is missing. Herein, new composite hydrogel matrices are developed using green, sustainable materials through a simple, reproducible low-temperature chemical method. Natural polymers (carboxymethyl cellulose and chitosan), crosslinkers (fumaric acid, citric acid, tartaric acid and zinc ion), and solvent (water) are used. The hydrogels are characterized for degree of crosslinking and microstructure parameters calculated using Flory Rehner equation. Bonding strength and stability of the microstructure are further assessed. With respect to the hydrolytic properties, it was found that CMC~FU~CSN exhibits well-defined microstructure (155% swelling, 79% water absorbency and 82% gel fraction) superior to the other crosslinked hydrogels and the non-crosslinked composite, CMC~CSN. However, its gel fraction was within the same range as CMC~CSN (332% swelling, 91% water absorbency and 79% gel fraction). Other characterization results confirm that CMC~FU~CSN has the optimum microstructure (3 nm mesh size, 261 g/mol molecular weight between crosslinks and 0.01 μmol/cm3 effective crosslinking density), thermal stability (2% mass loss at 50 °C, 3% at 100 °C against 6% at 50 °C, 8% at 100 °C for CMC~CSN), semi-crystalline structure and chemical properties making it preferred over CMC~CSN as a promising green and sustainable hydrogel matrix.Graphic Abstract
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N594614aeb9bd48e3a48bb9e12d95435e
    32 Ndc4648c87db843619929e88f8e90e60c
    33 sg:journal.1033767
    34 schema:keywords Abstract Green
    35 CMC
    36 CSN
    37 FU
    38 Flory-Rehner equation
    39 Herein
    40 applications
    41 behavior
    42 bonding strength
    43 characterization results
    44 chemical methods
    45 chemical properties
    46 composite hydrogel matrix
    47 composite hydrogels
    48 conventional hydrogels
    49 critical information
    50 crosslinker
    51 crosslinking
    52 date
    53 degree
    54 degree of crosslinking
    55 effect
    56 effect of crosslinker
    57 equations
    58 fraction
    59 gel fraction
    60 green
    61 hydrogel matrix
    62 hydrogels
    63 hydrolytic behavior
    64 hydrolytic properties
    65 information
    66 levels
    67 literature
    68 low-temperature chemical method
    69 materials
    70 matrix
    71 method
    72 microstructure
    73 microstructure parameters
    74 most applications
    75 natural polymers
    76 optimum microstructure
    77 parameters
    78 polymers
    79 process
    80 properties
    81 range
    82 reproducible process
    83 respect
    84 results
    85 safe material
    86 same range
    87 semi-crystalline structure
    88 solvent
    89 stability
    90 strength
    91 structure
    92 study
    93 sustainable materials
    94 thermal stability
    95 toxicity levels
    96 schema:name Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure
    97 schema:pagination 5493-5512
    98 schema:productId N8a4a5ef454fe445aa5117e3616255d2c
    99 Nca84e3e32b134b8d852589a3e950aaae
    100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137810155
    101 https://doi.org/10.1007/s10570-021-03870-2
    102 schema:sdDatePublished 2022-12-01T06:42
    103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    104 schema:sdPublisher N7b470b5fc8cc4bdeac4c6dd946335a61
    105 schema:url https://doi.org/10.1007/s10570-021-03870-2
    106 sgo:license sg:explorer/license/
    107 sgo:sdDataset articles
    108 rdf:type schema:ScholarlyArticle
    109 N2f288c21babc4df79aaf0c833908bbce rdf:first sg:person.01304775647.62
    110 rdf:rest rdf:nil
    111 N594614aeb9bd48e3a48bb9e12d95435e schema:volumeNumber 28
    112 rdf:type schema:PublicationVolume
    113 N7b470b5fc8cc4bdeac4c6dd946335a61 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 N8a4a5ef454fe445aa5117e3616255d2c schema:name dimensions_id
    116 schema:value pub.1137810155
    117 rdf:type schema:PropertyValue
    118 Nca84e3e32b134b8d852589a3e950aaae schema:name doi
    119 schema:value 10.1007/s10570-021-03870-2
    120 rdf:type schema:PropertyValue
    121 Ndc4648c87db843619929e88f8e90e60c schema:issueNumber 9
    122 rdf:type schema:PublicationIssue
    123 Nea55fd851af24e2db193a1b9eab02fb8 rdf:first sg:person.014355042144.54
    124 rdf:rest N2f288c21babc4df79aaf0c833908bbce
    125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Chemical Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Macromolecular and Materials Chemistry
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Engineering
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Materials Engineering
    136 rdf:type schema:DefinedTerm
    137 sg:grant.9307999 http://pending.schema.org/fundedItem sg:pub.10.1007/s10570-021-03870-2
    138 rdf:type schema:MonetaryGrant
    139 sg:journal.1033767 schema:issn 0969-0239
    140 1572-882X
    141 schema:name Cellulose
    142 schema:publisher Springer Nature
    143 rdf:type schema:Periodical
    144 sg:person.01304775647.62 schema:affiliation grid-institutes:grid.35030.35
    145 schema:familyName Daoud
    146 schema:givenName Walid A.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304775647.62
    148 rdf:type schema:Person
    149 sg:person.014355042144.54 schema:affiliation grid-institutes:grid.35030.35
    150 schema:familyName Uyanga
    151 schema:givenName Kindness A.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014355042144.54
    153 rdf:type schema:Person
    154 sg:pub.10.1007/978-3-319-76573-0_19-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106365012
    155 https://doi.org/10.1007/978-3-319-76573-0_19-2
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-319-76573-0_27-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104994138
    158 https://doi.org/10.1007/978-3-319-76573-0_27-1
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/978-3-319-76573-0_55-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105225012
    161 https://doi.org/10.1007/978-3-319-76573-0_55-1
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-3-319-76573-0_9-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104475373
    164 https://doi.org/10.1007/978-3-319-76573-0_9-1
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00289-012-0761-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028912135
    167 https://doi.org/10.1007/s00289-012-0761-7
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00289-016-1613-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031198077
    170 https://doi.org/10.1007/s00289-016-1613-7
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00289-019-02712-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731549
    173 https://doi.org/10.1007/s00289-019-02712-3
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10570-011-9631-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015864054
    176 https://doi.org/10.1007/s10570-011-9631-y
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s10570-012-9833-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049844020
    179 https://doi.org/10.1007/s10570-012-9833-y
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10570-014-0204-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005364669
    182 https://doi.org/10.1007/s10570-014-0204-8
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10570-014-0442-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031448
    185 https://doi.org/10.1007/s10570-014-0442-9
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10570-015-0603-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000051657
    188 https://doi.org/10.1007/s10570-015-0603-5
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10570-015-0851-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039505794
    191 https://doi.org/10.1007/s10570-015-0851-4
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10570-017-1557-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092594240
    194 https://doi.org/10.1007/s10570-017-1557-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10570-018-02232-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111580025
    197 https://doi.org/10.1007/s10570-018-02232-9
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10570-018-1683-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100824018
    200 https://doi.org/10.1007/s10570-018-1683-9
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10971-019-05202-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123261352
    203 https://doi.org/10.1007/s10971-019-05202-0
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s11144-014-0703-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020700903
    206 https://doi.org/10.1007/s11144-014-0703-5
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s13197-019-04010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120281887
    209 https://doi.org/10.1007/s13197-019-04010-2
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1134/s0965545x18060044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953506
    212 https://doi.org/10.1134/s0965545x18060044
    213 rdf:type schema:CreativeWork
    214 grid-institutes:grid.35030.35 schema:alternateName School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
    215 schema:name School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
    216 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...