Influence of water on the dielectric properties, electrical conductivity and microwave absorption properties of amorphous yellow dextrin View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Adrian Radoń, Patryk Włodarczyk

ABSTRACT

Electrical conductivity as well as dielectric and microwave absorption properties of yellow dextrin were described. The studied material was in the form of milled and pressed tablets. It was found that the minor addition of water (5.4 wt% of water content) significantly changes the properties of tested absorber. The shift of γ-relaxation was observed for water-saturated amorphous yellow dextrin. It was also confirmed, that the activation energy of this process has been significantly increased by a slight addition of water (0.45–0.62 eV). Mobility of water in the yellow dextrin–water system is also related to the increased conductivity of the sample. The yellow dextrin was found to be a great microwave absorber. Addition of water causes also the increase of microwave absorption properties (decrease of reflection loss from − 2.37 to − 17.29 dB and shielding efficiency from − 9.09 to − 36.84 dB for 1 cm sample thickness). Moreover, the highest absorption frequency region is being shifted by water towards lower frequencies (from 4.78 to 2.83 GHz). More... »

PAGES

1-12

Journal

TITLE

Cellulose

ISSUE

5

VOLUME

26

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10570-019-02324-0

    DOI

    http://dx.doi.org/10.1007/s10570-019-02324-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112261932


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Non-Ferrous Metals", 
              "id": "https://www.grid.ac/institutes/grid.425049.e", 
              "name": [
                "Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rado\u0144", 
            "givenName": "Adrian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Non-Ferrous Metals", 
              "id": "https://www.grid.ac/institutes/grid.425049.e", 
              "name": [
                "Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "W\u0142odarczyk", 
            "givenName": "Patryk", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1021184620045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000459261", 
              "https://doi.org/10.1023/a:1021184620045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4935271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000702064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.200900254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004095238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.200900254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004095238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/app.22021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005356286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/app.22021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005356286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matchemphys.2008.08.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009384980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-444-53730-0.00022-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009785891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbpol.2014.08.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012390500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/193058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014603210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.19880401007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016460526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00150193.2016.1204866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019678977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0096-5332(08)60157-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022399123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aag2421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033455118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2215/cjn.10041110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047390464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep03421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048657626", 
              "https://doi.org/10.1038/srep03421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0379-6779(01)00562-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048885216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3688435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049949986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1005-0302(12)60150-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052831837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am401695p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055143742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100599a016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055673845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp1034773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056076893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp1034773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056076893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp711502a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056106115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp711502a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056106115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1380205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057700967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.86.031506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060743901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.86.031506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060743901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12693/aphyspola.108.137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064619726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.diamond.2017.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085567851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2017.11.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092998822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2017.11.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092998822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jallcom.2017.11.380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093121549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10426507.2017.1417308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099685247"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "Electrical conductivity as well as dielectric and microwave absorption properties of yellow dextrin were described. The studied material was in the form of milled and pressed tablets. It was found that the minor addition of water (5.4 wt% of water content) significantly changes the properties of tested absorber. The shift of \u03b3-relaxation was observed for water-saturated amorphous yellow dextrin. It was also confirmed, that the activation energy of this process has been significantly increased by a slight addition of water (0.45\u20130.62 eV). Mobility of water in the yellow dextrin\u2013water system is also related to the increased conductivity of the sample. The yellow dextrin was found to be a great microwave absorber. Addition of water causes also the increase of microwave absorption properties (decrease of reflection loss from \u2212 2.37 to \u2212 17.29 dB and shielding efficiency from \u2212 9.09 to \u2212 36.84 dB for 1 cm sample thickness). Moreover, the highest absorption frequency region is being shifted by water towards lower frequencies (from 4.78 to 2.83 GHz). ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10570-019-02324-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7417450", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033767", 
            "issn": [
              "0969-0239", 
              "1572-882X"
            ], 
            "name": "Cellulose", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Influence of water on the dielectric properties, electrical conductivity and microwave absorption properties of amorphous yellow dextrin", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6d07dbac0294c7119eefc9e2399a139a70295137f60fef55b16b458a05ad448c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10570-019-02324-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112261932"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10570-019-02324-0", 
          "https://app.dimensions.ai/details/publication/pub.1112261932"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117112_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10570-019-02324-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10570-019-02324-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10570-019-02324-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10570-019-02324-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10570-019-02324-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10570-019-02324-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N34440803d0144dfea25575afd5ead7ce
    4 schema:citation sg:pub.10.1023/a:1021184620045
    5 sg:pub.10.1038/srep03421
    6 https://doi.org/10.1002/app.22021
    7 https://doi.org/10.1002/star.19880401007
    8 https://doi.org/10.1002/star.200900254
    9 https://doi.org/10.1016/b978-0-444-53730-0.00022-1
    10 https://doi.org/10.1016/j.carbpol.2014.08.009
    11 https://doi.org/10.1016/j.diamond.2017.05.014
    12 https://doi.org/10.1016/j.jallcom.2017.11.380
    13 https://doi.org/10.1016/j.jeurceramsoc.2017.11.052
    14 https://doi.org/10.1016/j.matchemphys.2008.08.065
    15 https://doi.org/10.1016/s0096-5332(08)60157-5
    16 https://doi.org/10.1016/s0379-6779(01)00562-8
    17 https://doi.org/10.1016/s1005-0302(12)60150-9
    18 https://doi.org/10.1021/am401695p
    19 https://doi.org/10.1021/j100599a016
    20 https://doi.org/10.1021/jp1034773
    21 https://doi.org/10.1021/jp711502a
    22 https://doi.org/10.1063/1.1380205
    23 https://doi.org/10.1063/1.3688435
    24 https://doi.org/10.1063/1.4935271
    25 https://doi.org/10.1080/00150193.2016.1204866
    26 https://doi.org/10.1080/10426507.2017.1417308
    27 https://doi.org/10.1103/physreve.86.031506
    28 https://doi.org/10.1126/science.aag2421
    29 https://doi.org/10.1155/2014/193058
    30 https://doi.org/10.12693/aphyspola.108.137
    31 https://doi.org/10.2215/cjn.10041110
    32 schema:datePublished 2019-03
    33 schema:datePublishedReg 2019-03-01
    34 schema:description Electrical conductivity as well as dielectric and microwave absorption properties of yellow dextrin were described. The studied material was in the form of milled and pressed tablets. It was found that the minor addition of water (5.4 wt% of water content) significantly changes the properties of tested absorber. The shift of γ-relaxation was observed for water-saturated amorphous yellow dextrin. It was also confirmed, that the activation energy of this process has been significantly increased by a slight addition of water (0.45–0.62 eV). Mobility of water in the yellow dextrin–water system is also related to the increased conductivity of the sample. The yellow dextrin was found to be a great microwave absorber. Addition of water causes also the increase of microwave absorption properties (decrease of reflection loss from − 2.37 to − 17.29 dB and shielding efficiency from − 9.09 to − 36.84 dB for 1 cm sample thickness). Moreover, the highest absorption frequency region is being shifted by water towards lower frequencies (from 4.78 to 2.83 GHz).
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N252fd413e3ce4756a629d1755353b416
    39 Nbec33a559ec34308a78e8db0e1d613f8
    40 sg:journal.1033767
    41 schema:name Influence of water on the dielectric properties, electrical conductivity and microwave absorption properties of amorphous yellow dextrin
    42 schema:pagination 1-12
    43 schema:productId N07db0fe8ec5d4c008bd20f61578ad31e
    44 N837dedd185f94ba0a61e46daa8f444b4
    45 Nc110f05898994dc39bcd25cf535d4183
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112261932
    47 https://doi.org/10.1007/s10570-019-02324-0
    48 schema:sdDatePublished 2019-04-11T14:19
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N4a86d8a417f440dbbff167f725b2c05b
    51 schema:url https://link.springer.com/10.1007%2Fs10570-019-02324-0
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N07db0fe8ec5d4c008bd20f61578ad31e schema:name readcube_id
    56 schema:value 6d07dbac0294c7119eefc9e2399a139a70295137f60fef55b16b458a05ad448c
    57 rdf:type schema:PropertyValue
    58 N252fd413e3ce4756a629d1755353b416 schema:volumeNumber 26
    59 rdf:type schema:PublicationVolume
    60 N34440803d0144dfea25575afd5ead7ce rdf:first Nfe0647e436c24b379c6e8b0df483b631
    61 rdf:rest N4c7ce210952d48dfbde9a3786dad274b
    62 N4a86d8a417f440dbbff167f725b2c05b schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N4c7ce210952d48dfbde9a3786dad274b rdf:first N780da4ea98de49bda01fcdee9a4aba9d
    65 rdf:rest rdf:nil
    66 N780da4ea98de49bda01fcdee9a4aba9d schema:affiliation https://www.grid.ac/institutes/grid.425049.e
    67 schema:familyName Włodarczyk
    68 schema:givenName Patryk
    69 rdf:type schema:Person
    70 N837dedd185f94ba0a61e46daa8f444b4 schema:name dimensions_id
    71 schema:value pub.1112261932
    72 rdf:type schema:PropertyValue
    73 Nbec33a559ec34308a78e8db0e1d613f8 schema:issueNumber 5
    74 rdf:type schema:PublicationIssue
    75 Nc110f05898994dc39bcd25cf535d4183 schema:name doi
    76 schema:value 10.1007/s10570-019-02324-0
    77 rdf:type schema:PropertyValue
    78 Nfe0647e436c24b379c6e8b0df483b631 schema:affiliation https://www.grid.ac/institutes/grid.425049.e
    79 schema:familyName Radoń
    80 schema:givenName Adrian
    81 rdf:type schema:Person
    82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Engineering
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Materials Engineering
    87 rdf:type schema:DefinedTerm
    88 sg:grant.7417450 http://pending.schema.org/fundedItem sg:pub.10.1007/s10570-019-02324-0
    89 rdf:type schema:MonetaryGrant
    90 sg:journal.1033767 schema:issn 0969-0239
    91 1572-882X
    92 schema:name Cellulose
    93 rdf:type schema:Periodical
    94 sg:pub.10.1023/a:1021184620045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000459261
    95 https://doi.org/10.1023/a:1021184620045
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1038/srep03421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048657626
    98 https://doi.org/10.1038/srep03421
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1002/app.22021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005356286
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1002/star.19880401007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016460526
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1002/star.200900254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004095238
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/b978-0-444-53730-0.00022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785891
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.carbpol.2014.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012390500
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.diamond.2017.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085567851
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.jallcom.2017.11.380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093121549
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.jeurceramsoc.2017.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092998822
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.matchemphys.2008.08.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009384980
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0096-5332(08)60157-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022399123
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/s0379-6779(01)00562-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048885216
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s1005-0302(12)60150-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052831837
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1021/am401695p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055143742
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1021/j100599a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055673845
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1021/jp1034773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056076893
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1021/jp711502a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056106115
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1063/1.1380205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700967
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1063/1.3688435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049949986
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1063/1.4935271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000702064
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1080/00150193.2016.1204866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678977
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1080/10426507.2017.1417308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099685247
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physreve.86.031506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060743901
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1126/science.aag2421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033455118
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1155/2014/193058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014603210
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.12693/aphyspola.108.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064619726
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.2215/cjn.10041110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047390464
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.425049.e schema:alternateName Institute of Non-Ferrous Metals
    153 schema:name Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...