Dynamic vapor sorption and thermoporometry to probe water in celluloses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-08

AUTHORS

Carlos Driemeier, Fernanda M. Mendes, Marcelo M. Oliveira

ABSTRACT

Dynamic vapor sorption and thermoporometry probe complementary dimensions of water interaction with cellulose. While sorption is primarily sensitive to the first hydration layers, thermoporometry is primarily sensitive to the nanometric water-filled pores. In this article, these analytical techniques are detailed and applied to model mesoporous materials and to a wide spectrum of celluloses. Correlations between techniques are explored. In dynamic vapor sorption, celluloses present a general characteristic time of desorption. On the other hand, they present highly variable characteristic times of sorption, indicating that material-specific properties may be inferred from sorption kinetics. Regarding thermoporometry, the thermodynamics of ice melting in irregular pore shapes is introduced. Moreover, in our thermoporometry analysis with differential scanning calorimeter, freezing temperature is extended to −70 °C, allowing pores smaller than a few nanometers to be measured. Nevertheless, several data corrections are required for accurate thermoporometry at this condition. Comparisons between techniques show that sorption hysteresis is positively correlated with wet porosity. The presented developments and results will guide future application of these techniques to probe water in celluloses. More... »

PAGES

1051-1063

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10570-012-9727-z

DOI

http://dx.doi.org/10.1007/s10570-012-9727-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000706099


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laborat\u00f3rio Nacional de Ci\u00eancia e Tecnologia do Bioetanol", 
          "id": "https://www.grid.ac/institutes/grid.452574.5", 
          "name": [
            "Laborat\u00f3rio Nacional de Ci\u00eancia e Tecnologia do Bioetanol\u2014CTBE, Caixa Postal 6170, 13083-970, Campinas, S\u00e3o Paulo, Brazil", 
            "Rua Giuseppe M\u00e1ximo Scolfaro, 10000, P\u00f3lo II de Alta Tecnologia de Campinas, Caixa Postal 6170, CEP 13083-970, Campinas, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Driemeier", 
        "givenName": "Carlos", 
        "id": "sg:person.01372732045.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372732045.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laborat\u00f3rio Nacional de Ci\u00eancia e Tecnologia do Bioetanol", 
          "id": "https://www.grid.ac/institutes/grid.452574.5", 
          "name": [
            "Laborat\u00f3rio Nacional de Ci\u00eancia e Tecnologia do Bioetanol\u2014CTBE, Caixa Postal 6170, 13083-970, Campinas, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mendes", 
        "givenName": "Fernanda M.", 
        "id": "sg:person.01160160010.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160160010.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laborat\u00f3rio Nacional de Ci\u00eancia e Tecnologia do Bioetanol", 
          "id": "https://www.grid.ac/institutes/grid.452574.5", 
          "name": [
            "Laborat\u00f3rio Nacional de Ci\u00eancia e Tecnologia do Bioetanol\u2014CTBE, Caixa Postal 6170, 13083-970, Campinas, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliveira", 
        "givenName": "Marcelo M.", 
        "id": "sg:person.012025107245.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012025107245.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.carbpol.2006.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6031(77)85122-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009093018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf946420b084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011999195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-73683-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012043545", 
          "https://doi.org/10.1007/978-3-642-73683-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-73683-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012043545", 
          "https://doi.org/10.1007/978-3-642-73683-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013030414555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012629291", 
          "https://doi.org/10.1023/a:1013030414555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10570-011-9512-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017912999", 
          "https://doi.org/10.1007/s10570-011-9512-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.031604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021231851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.031604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021231851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2005.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025683916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/masy.200651208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025731555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/icb/icp026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031867987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/icb/icp026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031867987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnmrs.2008.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039588375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpharm.2003.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048491451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp711554c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056106153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp711554c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056106153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3183/npprj-1998-13-01-p031-036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071109705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3183/npprj-1998-13-01-p031-036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071109705"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-08", 
    "datePublishedReg": "2012-08-01", 
    "description": "Dynamic vapor sorption and thermoporometry probe complementary dimensions of water interaction with cellulose. While sorption is primarily sensitive to the first hydration layers, thermoporometry is primarily sensitive to the nanometric water-filled pores. In this article, these analytical techniques are detailed and applied to model mesoporous materials and to a wide spectrum of celluloses. Correlations between techniques are explored. In dynamic vapor sorption, celluloses present a general characteristic time of desorption. On the other hand, they present highly variable characteristic times of sorption, indicating that material-specific properties may be inferred from sorption kinetics. Regarding thermoporometry, the thermodynamics of ice melting in irregular pore shapes is introduced. Moreover, in our thermoporometry analysis with differential scanning calorimeter, freezing temperature is extended to \u221270 \u00b0C, allowing pores smaller than a few nanometers to be measured. Nevertheless, several data corrections are required for accurate thermoporometry at this condition. Comparisons between techniques show that sorption hysteresis is positively correlated with wet porosity. The presented developments and results will guide future application of these techniques to probe water in celluloses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10570-012-9727-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1033767", 
        "issn": [
          "0969-0239", 
          "1572-882X"
        ], 
        "name": "Cellulose", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Dynamic vapor sorption and thermoporometry to probe water in celluloses", 
    "pagination": "1051-1063", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "035cc1305979df6dbaf0fda55c15b67c75583a9a5eb95574cc0a2a253c81ec2b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10570-012-9727-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000706099"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10570-012-9727-z", 
      "https://app.dimensions.ai/details/publication/pub.1000706099"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10570-012-9727-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10570-012-9727-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10570-012-9727-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10570-012-9727-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10570-012-9727-z'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10570-012-9727-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na98ef1099e004fea8dbc27009535b438
4 schema:citation sg:pub.10.1007/978-3-642-73683-4
5 sg:pub.10.1007/s10570-011-9512-4
6 sg:pub.10.1023/a:1013030414555
7 https://doi.org/10.1002/masy.200651208
8 https://doi.org/10.1016/0040-6031(77)85122-8
9 https://doi.org/10.1016/j.carbpol.2006.02.026
10 https://doi.org/10.1016/j.ijpharm.2003.09.030
11 https://doi.org/10.1016/j.pnmrs.2008.06.001
12 https://doi.org/10.1016/j.tca.2005.02.015
13 https://doi.org/10.1021/jp711554c
14 https://doi.org/10.1039/tf946420b084
15 https://doi.org/10.1093/icb/icp026
16 https://doi.org/10.1103/physreve.81.031604
17 https://doi.org/10.1103/revmodphys.78.695
18 https://doi.org/10.3183/npprj-1998-13-01-p031-036
19 schema:datePublished 2012-08
20 schema:datePublishedReg 2012-08-01
21 schema:description Dynamic vapor sorption and thermoporometry probe complementary dimensions of water interaction with cellulose. While sorption is primarily sensitive to the first hydration layers, thermoporometry is primarily sensitive to the nanometric water-filled pores. In this article, these analytical techniques are detailed and applied to model mesoporous materials and to a wide spectrum of celluloses. Correlations between techniques are explored. In dynamic vapor sorption, celluloses present a general characteristic time of desorption. On the other hand, they present highly variable characteristic times of sorption, indicating that material-specific properties may be inferred from sorption kinetics. Regarding thermoporometry, the thermodynamics of ice melting in irregular pore shapes is introduced. Moreover, in our thermoporometry analysis with differential scanning calorimeter, freezing temperature is extended to −70 °C, allowing pores smaller than a few nanometers to be measured. Nevertheless, several data corrections are required for accurate thermoporometry at this condition. Comparisons between techniques show that sorption hysteresis is positively correlated with wet porosity. The presented developments and results will guide future application of these techniques to probe water in celluloses.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N24840ccc62534ade856c3742242bc5fb
26 Nd6184d01319646f489f6ffaad97867f9
27 sg:journal.1033767
28 schema:name Dynamic vapor sorption and thermoporometry to probe water in celluloses
29 schema:pagination 1051-1063
30 schema:productId N5700b6367313401c988488d81777b406
31 N9490ab499a0743f69cd3b8eb9ad55963
32 Nb7a5f7907b7142dbad7b7f4408a18a2a
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000706099
34 https://doi.org/10.1007/s10570-012-9727-z
35 schema:sdDatePublished 2019-04-11T14:31
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N884b46e1d96b4400bd0ee34b316704b4
38 schema:url http://link.springer.com/10.1007/s10570-012-9727-z
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N18f45a4b32af485597f9a66b6777716a rdf:first sg:person.01160160010.47
43 rdf:rest Nb334b9bd1f1d45c3aea6f7f693afce0b
44 N24840ccc62534ade856c3742242bc5fb schema:volumeNumber 19
45 rdf:type schema:PublicationVolume
46 N5700b6367313401c988488d81777b406 schema:name doi
47 schema:value 10.1007/s10570-012-9727-z
48 rdf:type schema:PropertyValue
49 N884b46e1d96b4400bd0ee34b316704b4 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N9490ab499a0743f69cd3b8eb9ad55963 schema:name readcube_id
52 schema:value 035cc1305979df6dbaf0fda55c15b67c75583a9a5eb95574cc0a2a253c81ec2b
53 rdf:type schema:PropertyValue
54 Na98ef1099e004fea8dbc27009535b438 rdf:first sg:person.01372732045.72
55 rdf:rest N18f45a4b32af485597f9a66b6777716a
56 Nb334b9bd1f1d45c3aea6f7f693afce0b rdf:first sg:person.012025107245.86
57 rdf:rest rdf:nil
58 Nb7a5f7907b7142dbad7b7f4408a18a2a schema:name dimensions_id
59 schema:value pub.1000706099
60 rdf:type schema:PropertyValue
61 Nd6184d01319646f489f6ffaad97867f9 schema:issueNumber 4
62 rdf:type schema:PublicationIssue
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
67 schema:name Materials Engineering
68 rdf:type schema:DefinedTerm
69 sg:journal.1033767 schema:issn 0969-0239
70 1572-882X
71 schema:name Cellulose
72 rdf:type schema:Periodical
73 sg:person.01160160010.47 schema:affiliation https://www.grid.ac/institutes/grid.452574.5
74 schema:familyName Mendes
75 schema:givenName Fernanda M.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160160010.47
77 rdf:type schema:Person
78 sg:person.012025107245.86 schema:affiliation https://www.grid.ac/institutes/grid.452574.5
79 schema:familyName Oliveira
80 schema:givenName Marcelo M.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012025107245.86
82 rdf:type schema:Person
83 sg:person.01372732045.72 schema:affiliation https://www.grid.ac/institutes/grid.452574.5
84 schema:familyName Driemeier
85 schema:givenName Carlos
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372732045.72
87 rdf:type schema:Person
88 sg:pub.10.1007/978-3-642-73683-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012043545
89 https://doi.org/10.1007/978-3-642-73683-4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s10570-011-9512-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017912999
92 https://doi.org/10.1007/s10570-011-9512-4
93 rdf:type schema:CreativeWork
94 sg:pub.10.1023/a:1013030414555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012629291
95 https://doi.org/10.1023/a:1013030414555
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/masy.200651208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025731555
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0040-6031(77)85122-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009093018
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.carbpol.2006.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484780
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ijpharm.2003.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048491451
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.pnmrs.2008.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039588375
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.tca.2005.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025683916
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/jp711554c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056106153
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1039/tf946420b084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011999195
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1093/icb/icp026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031867987
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreve.81.031604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021231851
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/revmodphys.78.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839617
118 rdf:type schema:CreativeWork
119 https://doi.org/10.3183/npprj-1998-13-01-p031-036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071109705
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.452574.5 schema:alternateName Laboratório Nacional de Ciência e Tecnologia do Bioetanol
122 schema:name Laboratório Nacional de Ciência e Tecnologia do Bioetanol—CTBE, Caixa Postal 6170, 13083-970, Campinas, São Paulo, Brazil
123 Rua Giuseppe Máximo Scolfaro, 10000, Pólo II de Alta Tecnologia de Campinas, Caixa Postal 6170, CEP 13083-970, Campinas, Brazil
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...