Creation of a synthetic population of space debris to reduce discrepancies between simulation and observations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Alexis Petit, Daniel Casanova, Morgane Dumont, Anne Lemaître

ABSTRACT

The number of space debris has increased in the orbital environment, and consequently, the risk of collision between satellites and space debris or space debris and space debris has become a hot topic in Celestial Mechanics. Unfortunately, just a small fraction of the biggest and brightest objects are visible by means of radar and optical telescopes. In the last years, many efforts have been made to simulate the creation of space debris populations through different models, which use different sources and diverse orbital propagators, to study how they evolve in the near future. Modeling a fragmentation event is rather complex; furthermore, large uncertainties appear in the number of created fragments, the ejection directions and velocities. In this paper, we propose an innovative way to create a synthetic population of space debris from simulated data, which are constrained by observational data, plus an iterative proportional fitting method to adjust the simulated population by statistical means. The final purpose consists in improving a synthetic population of space debris created with a space debris model helped by an additional data set which allows to converge toward a new synthetic population whose global statistical properties are more satisfying. More... »

PAGES

79

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10569-018-9873-1

DOI

http://dx.doi.org/10.1007/s10569-018-9873-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110580245


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "University of Namur, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petit", 
        "givenName": "Alexis", 
        "id": "sg:person.016033423563.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033423563.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro Universitario de la Defensa", 
          "id": "https://www.grid.ac/institutes/grid.467120.6", 
          "name": [
            "Centro Universitario de la Defensa, Saragossa, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casanova", 
        "givenName": "Daniel", 
        "id": "sg:person.014064664757.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064664757.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "University of Namur, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumont", 
        "givenName": "Morgane", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "University of Namur, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lema\u00eetre", 
        "givenName": "Anne", 
        "id": "sg:person.014221220641.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221220641.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10569-013-9480-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007423828", 
          "https://doi.org/10.1007/s10569-013-9480-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-2304-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007787918", 
          "https://doi.org/10.1007/978-94-017-2304-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2015.05.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010939781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compenvurbsys.2013.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012008876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2003.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015033697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2009.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019805964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2003.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023120355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2012.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026616501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-015-9644-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034581692", 
          "https://doi.org/10.1007/s10569-015-9644-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actaastro.2006.02.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034959499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036120476", 
          "https://doi.org/10.1007/bf00048825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036120476", 
          "https://doi.org/10.1007/bf00048825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1177(01)00423-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044165488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2016.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044942865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-006-9028-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050610765", 
          "https://doi.org/10.1007/s10569-006-9028-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-006-9028-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050610765", 
          "https://doi.org/10.1007/s10569-006-9028-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2016.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051172487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361/201118522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056917889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/stu1065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059913685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jos-2017-0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092821737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b20666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095906321"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The number of space debris has increased in the orbital environment, and consequently, the risk of collision between satellites and space debris or space debris and space debris has become a hot topic in Celestial Mechanics. Unfortunately, just a small fraction of the biggest and brightest objects are visible by means of radar and optical telescopes. In the last years, many efforts have been made to simulate the creation of space debris populations through different models, which use different sources and diverse orbital propagators, to study how they evolve in the near future. Modeling a fragmentation event is rather complex; furthermore, large uncertainties appear in the number of created fragments, the ejection directions and velocities. In this paper, we propose an innovative way to create a synthetic population of space debris from simulated data, which are constrained by observational data, plus an iterative proportional fitting method to adjust the simulated population by statistical means. The final purpose consists in improving a synthetic population of space debris created with a space debris model helped by an additional data set which allows to converge toward a new synthetic population whose global statistical properties are more satisfying.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10569-018-9873-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "130"
      }
    ], 
    "name": "Creation of a synthetic population of space debris to reduce discrepancies between simulation and observations", 
    "pagination": "79", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91e227c689443e90908a78c51c25ac41767a108679418c95ef383b061a7afcbc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10569-018-9873-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110580245"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10569-018-9873-1", 
      "https://app.dimensions.ai/details/publication/pub.1110580245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57247_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10569-018-9873-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-018-9873-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-018-9873-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-018-9873-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-018-9873-1'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10569-018-9873-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd96ed039b8354e0aa8adf0d788e242ba
4 schema:citation sg:pub.10.1007/978-94-017-2304-6_5
5 sg:pub.10.1007/bf00048825
6 sg:pub.10.1007/s10569-006-9028-7
7 sg:pub.10.1007/s10569-013-9480-0
8 sg:pub.10.1007/s10569-015-9644-1
9 https://doi.org/10.1016/j.actaastro.2006.02.053
10 https://doi.org/10.1016/j.asr.2003.01.009
11 https://doi.org/10.1016/j.asr.2003.02.027
12 https://doi.org/10.1016/j.asr.2009.02.014
13 https://doi.org/10.1016/j.asr.2012.02.009
14 https://doi.org/10.1016/j.asr.2015.05.035
15 https://doi.org/10.1016/j.asr.2016.03.005
16 https://doi.org/10.1016/j.compenvurbsys.2013.03.004
17 https://doi.org/10.1016/j.ijnonlinmec.2016.12.015
18 https://doi.org/10.1016/s0273-1177(01)00423-9
19 https://doi.org/10.1051/0004-6361/201118522
20 https://doi.org/10.1093/mnras/stu1065
21 https://doi.org/10.1201/b20666
22 https://doi.org/10.1515/jos-2017-0048
23 schema:datePublished 2018-12
24 schema:datePublishedReg 2018-12-01
25 schema:description The number of space debris has increased in the orbital environment, and consequently, the risk of collision between satellites and space debris or space debris and space debris has become a hot topic in Celestial Mechanics. Unfortunately, just a small fraction of the biggest and brightest objects are visible by means of radar and optical telescopes. In the last years, many efforts have been made to simulate the creation of space debris populations through different models, which use different sources and diverse orbital propagators, to study how they evolve in the near future. Modeling a fragmentation event is rather complex; furthermore, large uncertainties appear in the number of created fragments, the ejection directions and velocities. In this paper, we propose an innovative way to create a synthetic population of space debris from simulated data, which are constrained by observational data, plus an iterative proportional fitting method to adjust the simulated population by statistical means. The final purpose consists in improving a synthetic population of space debris created with a space debris model helped by an additional data set which allows to converge toward a new synthetic population whose global statistical properties are more satisfying.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N08f52c931c0040e19ed108e2e0ba96fe
30 N1d48c999da004ec0bf60c130acac771a
31 sg:journal.1136436
32 schema:name Creation of a synthetic population of space debris to reduce discrepancies between simulation and observations
33 schema:pagination 79
34 schema:productId N40c7b5f8603041ee81f8c976b28f4f43
35 N5856dff0c5774154a7b190929ed1bce1
36 N70504dd36d6044c0a004aaad211194ec
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110580245
38 https://doi.org/10.1007/s10569-018-9873-1
39 schema:sdDatePublished 2019-04-11T08:24
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N74d6bc713a1948dd862b000c760f36b1
42 schema:url https://link.springer.com/10.1007%2Fs10569-018-9873-1
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N08f52c931c0040e19ed108e2e0ba96fe schema:volumeNumber 130
47 rdf:type schema:PublicationVolume
48 N093d24a6355c42f5b864b92da51271de schema:affiliation https://www.grid.ac/institutes/grid.6520.1
49 schema:familyName Dumont
50 schema:givenName Morgane
51 rdf:type schema:Person
52 N0b2e4fcffc574a1ba17b9b035c7d0502 rdf:first sg:person.014064664757.74
53 rdf:rest Nd5a1066416c34a46b8af57a08529ab37
54 N1d48c999da004ec0bf60c130acac771a schema:issueNumber 12
55 rdf:type schema:PublicationIssue
56 N40c7b5f8603041ee81f8c976b28f4f43 schema:name doi
57 schema:value 10.1007/s10569-018-9873-1
58 rdf:type schema:PropertyValue
59 N43725b683311455294c672ff44d5df0c rdf:first sg:person.014221220641.31
60 rdf:rest rdf:nil
61 N5856dff0c5774154a7b190929ed1bce1 schema:name readcube_id
62 schema:value 91e227c689443e90908a78c51c25ac41767a108679418c95ef383b061a7afcbc
63 rdf:type schema:PropertyValue
64 N70504dd36d6044c0a004aaad211194ec schema:name dimensions_id
65 schema:value pub.1110580245
66 rdf:type schema:PropertyValue
67 N74d6bc713a1948dd862b000c760f36b1 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nd5a1066416c34a46b8af57a08529ab37 rdf:first N093d24a6355c42f5b864b92da51271de
70 rdf:rest N43725b683311455294c672ff44d5df0c
71 Nd96ed039b8354e0aa8adf0d788e242ba rdf:first sg:person.016033423563.88
72 rdf:rest N0b2e4fcffc574a1ba17b9b035c7d0502
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:journal.1136436 schema:issn 0008-8714
80 0923-2958
81 schema:name Celestial Mechanics and Dynamical Astronomy
82 rdf:type schema:Periodical
83 sg:person.014064664757.74 schema:affiliation https://www.grid.ac/institutes/grid.467120.6
84 schema:familyName Casanova
85 schema:givenName Daniel
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064664757.74
87 rdf:type schema:Person
88 sg:person.014221220641.31 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
89 schema:familyName Lemaître
90 schema:givenName Anne
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221220641.31
92 rdf:type schema:Person
93 sg:person.016033423563.88 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
94 schema:familyName Petit
95 schema:givenName Alexis
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033423563.88
97 rdf:type schema:Person
98 sg:pub.10.1007/978-94-017-2304-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007787918
99 https://doi.org/10.1007/978-94-017-2304-6_5
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf00048825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036120476
102 https://doi.org/10.1007/bf00048825
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10569-006-9028-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050610765
105 https://doi.org/10.1007/s10569-006-9028-7
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10569-013-9480-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007423828
108 https://doi.org/10.1007/s10569-013-9480-0
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10569-015-9644-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034581692
111 https://doi.org/10.1007/s10569-015-9644-1
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.actaastro.2006.02.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034959499
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.asr.2003.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023120355
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.asr.2003.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015033697
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.asr.2009.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019805964
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.asr.2012.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026616501
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.asr.2015.05.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939781
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.asr.2016.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044942865
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.compenvurbsys.2013.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012008876
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijnonlinmec.2016.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051172487
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0273-1177(01)00423-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044165488
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1051/0004-6361/201118522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056917889
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/mnras/stu1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059913685
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1201/b20666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095906321
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1515/jos-2017-0048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092821737
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.467120.6 schema:alternateName Centro Universitario de la Defensa
142 schema:name Centro Universitario de la Defensa, Saragossa, Spain
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
145 schema:name University of Namur, Namur, Belgium
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...