The two rigid body interaction using angular momentum theory formulae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Gwenaël Boué

ABSTRACT

This work presents an elegant formalism to model the evolution of the full two rigid body problem. The equations of motion, given in a Cartesian coordinate system, are expressed in terms of spherical harmonics and Wigner D-matrices. The algorithm benefits from the numerous recurrence relations satisfied by these functions allowing a fast evaluation of the mutual potential. Moreover, forces and torques are straightforwardly obtained by application of ladder operators taken from the angular momentum theory and commonly used in quantum mechanics. A numerical implementation of this algorithm is made. Tests show that the present code is significantly faster than those currently available in literature. More... »

PAGES

261-273

References to SciGraph publications

  • 1995-03. Reduction, relative equilibria and potential in the two rigid bodies problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2008-04. Figure–figure interaction between bodies having arbitrary shapes and mass distributions: a power series expansion approach in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2005-03. Mutual Potential of Homogeneous Polyhedra in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2006-11. Simulation of the full two rigid body problem using polyhedral mutual potential and potential derivatives approach in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1994-09. On the use of STF-tensors in celestial mechanics in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1978-10. Mutual gravitational potential ofN solid bodies in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2014-08. The two-body interaction potential in the STF tensor formalism: an application to binary asteroids in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2016-11. Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2017-03. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1988-03. An expansion in power series of mutual potential for gravitating bodies with finite sizes in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10569-017-9751-2

    DOI

    http://dx.doi.org/10.1007/s10569-017-9751-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083412422


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut de Mecanique Celeste et de Calcul des Ephemerides", 
              "id": "https://www.grid.ac/institutes/grid.462516.2", 
              "name": [
                "IMCCE, Observatoire de Paris, UPMC Univ. Paris 6, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bou\u00e9", 
            "givenName": "Gwena\u00ebl", 
            "id": "sg:person.010614370507.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614370507.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01230706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018698227", 
              "https://doi.org/10.1007/bf01230706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018698227", 
              "https://doi.org/10.1007/bf01230706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00691912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018817622", 
              "https://doi.org/10.1007/bf00691912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-016-9708-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019195226", 
              "https://doi.org/10.1007/s10569-016-9708-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-016-9708-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019195226", 
              "https://doi.org/10.1007/s10569-016-9708-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2009.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022354833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-016-9731-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023295396", 
              "https://doi.org/10.1007/s10569-016-9731-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-016-9731-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023295396", 
              "https://doi.org/10.1007/s10569-016-9731-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00693097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025220037", 
              "https://doi.org/10.1007/bf00693097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027299270", 
              "https://doi.org/10.1007/bf01230170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027299270", 
              "https://doi.org/10.1007/bf01230170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-006-9045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033422381", 
              "https://doi.org/10.1007/s10569-006-9045-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-006-9045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033422381", 
              "https://doi.org/10.1007/s10569-006-9045-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-008-9128-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038254703", 
              "https://doi.org/10.1007/s10569-008-9128-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-008-9128-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038254703", 
              "https://doi.org/10.1007/s10569-008-9128-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0098-3004(97)00110-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038957859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-004-4621-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039519967", 
              "https://doi.org/10.1007/s10569-004-4621-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-004-4621-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039519967", 
              "https://doi.org/10.1007/s10569-004-4621-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-014-9568-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049147919", 
              "https://doi.org/10.1007/s10569-014-9568-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361/20079054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056911809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/0270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098863049"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "This work presents an elegant formalism to model the evolution of the full two rigid body problem. The equations of motion, given in a Cartesian coordinate system, are expressed in terms of spherical harmonics and Wigner D-matrices. The algorithm benefits from the numerous recurrence relations satisfied by these functions allowing a fast evaluation of the mutual potential. Moreover, forces and torques are straightforwardly obtained by application of ladder operators taken from the angular momentum theory and commonly used in quantum mechanics. A numerical implementation of this algorithm is made. Tests show that the present code is significantly faster than those currently available in literature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10569-017-9751-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "128"
          }
        ], 
        "name": "The two rigid body interaction using angular momentum theory formulae", 
        "pagination": "261-273", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5a2326b0a27a86f02e581ecf91dab494b5e932707ef60b985ead8f1158ca5433"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10569-017-9751-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083412422"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10569-017-9751-2", 
          "https://app.dimensions.ai/details/publication/pub.1083412422"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10569-017-9751-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-017-9751-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-017-9751-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-017-9751-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-017-9751-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10569-017-9751-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6b9fb87558f54f1e8d7af764802eb496
    4 schema:citation sg:pub.10.1007/bf00691912
    5 sg:pub.10.1007/bf00693097
    6 sg:pub.10.1007/bf01230170
    7 sg:pub.10.1007/bf01230706
    8 sg:pub.10.1007/s10569-004-4621-0
    9 sg:pub.10.1007/s10569-006-9045-6
    10 sg:pub.10.1007/s10569-008-9128-7
    11 sg:pub.10.1007/s10569-014-9568-1
    12 sg:pub.10.1007/s10569-016-9708-x
    13 sg:pub.10.1007/s10569-016-9731-y
    14 https://doi.org/10.1016/j.jcp.2009.05.014
    15 https://doi.org/10.1016/s0098-3004(97)00110-6
    16 https://doi.org/10.1051/0004-6361/20079054
    17 https://doi.org/10.1142/0270
    18 schema:datePublished 2017-06
    19 schema:datePublishedReg 2017-06-01
    20 schema:description This work presents an elegant formalism to model the evolution of the full two rigid body problem. The equations of motion, given in a Cartesian coordinate system, are expressed in terms of spherical harmonics and Wigner D-matrices. The algorithm benefits from the numerous recurrence relations satisfied by these functions allowing a fast evaluation of the mutual potential. Moreover, forces and torques are straightforwardly obtained by application of ladder operators taken from the angular momentum theory and commonly used in quantum mechanics. A numerical implementation of this algorithm is made. Tests show that the present code is significantly faster than those currently available in literature.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf Na24e35ec192943e2b4cda7e53d0dd431
    25 Nc8891b3dbc3c4ee1878c0951826e78d8
    26 sg:journal.1136436
    27 schema:name The two rigid body interaction using angular momentum theory formulae
    28 schema:pagination 261-273
    29 schema:productId N17f151f5c8cf48f288720b9e79c70264
    30 Nc4a0c46cf0b744e987786bd695705eda
    31 Ne0baf559554a400f81a8ddceee44ec6d
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083412422
    33 https://doi.org/10.1007/s10569-017-9751-2
    34 schema:sdDatePublished 2019-04-11T10:02
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N8dfd59ec03084f919361f5c678173a17
    37 schema:url https://link.springer.com/10.1007%2Fs10569-017-9751-2
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N17f151f5c8cf48f288720b9e79c70264 schema:name doi
    42 schema:value 10.1007/s10569-017-9751-2
    43 rdf:type schema:PropertyValue
    44 N6b9fb87558f54f1e8d7af764802eb496 rdf:first sg:person.010614370507.31
    45 rdf:rest rdf:nil
    46 N8dfd59ec03084f919361f5c678173a17 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Na24e35ec192943e2b4cda7e53d0dd431 schema:volumeNumber 128
    49 rdf:type schema:PublicationVolume
    50 Nc4a0c46cf0b744e987786bd695705eda schema:name readcube_id
    51 schema:value 5a2326b0a27a86f02e581ecf91dab494b5e932707ef60b985ead8f1158ca5433
    52 rdf:type schema:PropertyValue
    53 Nc8891b3dbc3c4ee1878c0951826e78d8 schema:issueNumber 2-3
    54 rdf:type schema:PublicationIssue
    55 Ne0baf559554a400f81a8ddceee44ec6d schema:name dimensions_id
    56 schema:value pub.1083412422
    57 rdf:type schema:PropertyValue
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1136436 schema:issn 0008-8714
    65 0923-2958
    66 schema:name Celestial Mechanics and Dynamical Astronomy
    67 rdf:type schema:Periodical
    68 sg:person.010614370507.31 schema:affiliation https://www.grid.ac/institutes/grid.462516.2
    69 schema:familyName Boué
    70 schema:givenName Gwenaël
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614370507.31
    72 rdf:type schema:Person
    73 sg:pub.10.1007/bf00691912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018817622
    74 https://doi.org/10.1007/bf00691912
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf00693097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025220037
    77 https://doi.org/10.1007/bf00693097
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf01230170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027299270
    80 https://doi.org/10.1007/bf01230170
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01230706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018698227
    83 https://doi.org/10.1007/bf01230706
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/s10569-004-4621-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039519967
    86 https://doi.org/10.1007/s10569-004-4621-0
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/s10569-006-9045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033422381
    89 https://doi.org/10.1007/s10569-006-9045-6
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s10569-008-9128-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038254703
    92 https://doi.org/10.1007/s10569-008-9128-7
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s10569-014-9568-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049147919
    95 https://doi.org/10.1007/s10569-014-9568-1
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s10569-016-9708-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019195226
    98 https://doi.org/10.1007/s10569-016-9708-x
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10569-016-9731-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023295396
    101 https://doi.org/10.1007/s10569-016-9731-y
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.jcp.2009.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022354833
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/s0098-3004(97)00110-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038957859
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1051/0004-6361/20079054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056911809
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1142/0270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098863049
    110 rdf:type schema:CreativeWork
    111 https://www.grid.ac/institutes/grid.462516.2 schema:alternateName Institut de Mecanique Celeste et de Calcul des Ephemerides
    112 schema:name IMCCE, Observatoire de Paris, UPMC Univ. Paris 6, PSL Research University, Paris, France
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...