Mercury’s resonant rotation from secular orbital elements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-07-21

AUTHORS

Alexander Stark, Jürgen Oberst, Hauke Hussmann

ABSTRACT

We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period of (87.96934962±0.00000037)days\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(87.96934962 \pm 0.00000037)\,\hbox {days}$$\end{document} and (assuming a perfect resonance) a spin rate of (6.138506839±0.000000028)∘/day\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6.138506839\pm 0.000000028){}^{\circ }/\hbox {day}$$\end{document}. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury’s rotation. More... »

PAGES

263-277

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4

DOI

http://dx.doi.org/10.1007/s10569-015-9633-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050375485


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stark", 
        "givenName": "Alexander", 
        "id": "sg:person.016143566315.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143566315.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University for Geodesy and Cartography, 105064, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.440676.7", 
          "name": [
            "DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany", 
            "Moscow State University for Geodesy and Cartography, 105064, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberst", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.0642304505.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussmann", 
        "givenName": "Hauke", 
        "id": "sg:person.014476374441.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476374441.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10569-010-9320-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039298526", 
          "https://doi.org/10.1007/s10569-010-9320-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2061240a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020223481", 
          "https://doi.org/10.1038/2061240a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/208575a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017877812", 
          "https://doi.org/10.1038/208575a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2061240b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027983090", 
          "https://doi.org/10.1038/2061240b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338237a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015108153", 
          "https://doi.org/10.1038/338237a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-009-9234-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030420683", 
          "https://doi.org/10.1007/s10569-009-9234-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-48918-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005497370", 
          "https://doi.org/10.1007/978-0-387-48918-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01229508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052832509", 
          "https://doi.org/10.1007/bf01229508"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07-21", 
    "datePublishedReg": "2015-07-21", 
    "description": "We used recently produced Solar System ephemerides, which incorporate 2\u00a0years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet\u2019s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury\u2019s interior structure. In particular, we derive a mean orbital period of (87.96934962\u00b10.00000037)days\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(87.96934962 \\pm 0.00000037)\\,\\hbox {days}$$\\end{document} and (assuming a perfect resonance) a spin rate of (6.138506839\u00b10.000000028)\u2218/day\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(6.138506839\\pm 0.000000028){}^{\\circ }/\\hbox {day}$$\\end{document}. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101\u2013135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67\u00a0m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury\u2019s rotation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10569-015-9633-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4896989", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0923-2958", 
          "1572-9478"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "keywords": [
      "orbital elements", 
      "resonant rotation", 
      "solar system ephemerides", 
      "spin-orbit resonance", 
      "Mercury\u2019s interior structure", 
      "interior structure", 
      "mean orbital period", 
      "rotation rate", 
      "MESSENGER spacecraft", 
      "orbital period", 
      "Mercury's rotation", 
      "spin rate", 
      "planets", 
      "rotational parameters", 
      "physical interpretation", 
      "physical parameters", 
      "ephemeris", 
      "spacecraft", 
      "rotation", 
      "resonance", 
      "equator", 
      "calculations", 
      "plane", 
      "mercury", 
      "parameters", 
      "longitudinal displacement", 
      "structure", 
      "orientation", 
      "elements", 
      "uncertainty", 
      "displacement", 
      "values", 
      "important reference", 
      "interpretation", 
      "rate", 
      "turn", 
      "basic approach", 
      "Laplace", 
      "reference", 
      "approach", 
      "analysis", 
      "differences", 
      "approx", 
      "period", 
      "years", 
      "observations"
    ], 
    "name": "Mercury\u2019s resonant rotation from secular orbital elements", 
    "pagination": "263-277", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050375485"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10569-015-9633-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10569-015-9633-4", 
      "https://app.dimensions.ai/details/publication/pub.1050375485"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_652.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10569-015-9633-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      79 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10569-015-9633-4 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ne76279b2b4c44a249e4981c3743408ae
4 schema:citation sg:pub.10.1007/978-0-387-48918-6
5 sg:pub.10.1007/bf01229508
6 sg:pub.10.1007/s10569-009-9234-1
7 sg:pub.10.1007/s10569-010-9320-4
8 sg:pub.10.1038/2061240a0
9 sg:pub.10.1038/2061240b0
10 sg:pub.10.1038/208575a0
11 sg:pub.10.1038/338237a0
12 schema:datePublished 2015-07-21
13 schema:datePublishedReg 2015-07-21
14 schema:description We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period of (87.96934962±0.00000037)days\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(87.96934962 \pm 0.00000037)\,\hbox {days}$$\end{document} and (assuming a perfect resonance) a spin rate of (6.138506839±0.000000028)∘/day\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6.138506839\pm 0.000000028){}^{\circ }/\hbox {day}$$\end{document}. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury’s rotation.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N21fb3ec9c03a4af58b7019b53c08097c
19 Nceb677d7251749569e318e1413dbf1e0
20 sg:journal.1136436
21 schema:keywords Laplace
22 MESSENGER spacecraft
23 Mercury's rotation
24 Mercury’s interior structure
25 analysis
26 approach
27 approx
28 basic approach
29 calculations
30 differences
31 displacement
32 elements
33 ephemeris
34 equator
35 important reference
36 interior structure
37 interpretation
38 longitudinal displacement
39 mean orbital period
40 mercury
41 observations
42 orbital elements
43 orbital period
44 orientation
45 parameters
46 period
47 physical interpretation
48 physical parameters
49 plane
50 planets
51 rate
52 reference
53 resonance
54 resonant rotation
55 rotation
56 rotation rate
57 rotational parameters
58 solar system ephemerides
59 spacecraft
60 spin rate
61 spin-orbit resonance
62 structure
63 turn
64 uncertainty
65 values
66 years
67 schema:name Mercury’s resonant rotation from secular orbital elements
68 schema:pagination 263-277
69 schema:productId Nd1df103fedaa4622808484c2a161e0a1
70 Nd7bb818107714156a26e1969fe7342d6
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050375485
72 https://doi.org/10.1007/s10569-015-9633-4
73 schema:sdDatePublished 2022-05-20T07:30
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nfb98225e615949d085a969a51c400aa0
76 schema:url https://doi.org/10.1007/s10569-015-9633-4
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N21fb3ec9c03a4af58b7019b53c08097c schema:volumeNumber 123
81 rdf:type schema:PublicationVolume
82 N5f4637816b3e4b2382f76561aa775740 rdf:first sg:person.014476374441.74
83 rdf:rest rdf:nil
84 N9ad436fe04ee44928442d222bccc40e3 rdf:first sg:person.0642304505.83
85 rdf:rest N5f4637816b3e4b2382f76561aa775740
86 Nceb677d7251749569e318e1413dbf1e0 schema:issueNumber 3
87 rdf:type schema:PublicationIssue
88 Nd1df103fedaa4622808484c2a161e0a1 schema:name dimensions_id
89 schema:value pub.1050375485
90 rdf:type schema:PropertyValue
91 Nd7bb818107714156a26e1969fe7342d6 schema:name doi
92 schema:value 10.1007/s10569-015-9633-4
93 rdf:type schema:PropertyValue
94 Ne76279b2b4c44a249e4981c3743408ae rdf:first sg:person.016143566315.57
95 rdf:rest N9ad436fe04ee44928442d222bccc40e3
96 Nfb98225e615949d085a969a51c400aa0 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
102 schema:name Applied Mathematics
103 rdf:type schema:DefinedTerm
104 sg:grant.4896989 http://pending.schema.org/fundedItem sg:pub.10.1007/s10569-015-9633-4
105 rdf:type schema:MonetaryGrant
106 sg:journal.1136436 schema:issn 0923-2958
107 1572-9478
108 schema:name Celestial Mechanics and Dynamical Astronomy
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.014476374441.74 schema:affiliation grid-institutes:grid.7551.6
112 schema:familyName Hussmann
113 schema:givenName Hauke
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476374441.74
115 rdf:type schema:Person
116 sg:person.016143566315.57 schema:affiliation grid-institutes:grid.7551.6
117 schema:familyName Stark
118 schema:givenName Alexander
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143566315.57
120 rdf:type schema:Person
121 sg:person.0642304505.83 schema:affiliation grid-institutes:grid.440676.7
122 schema:familyName Oberst
123 schema:givenName Jürgen
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83
125 rdf:type schema:Person
126 sg:pub.10.1007/978-0-387-48918-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005497370
127 https://doi.org/10.1007/978-0-387-48918-6
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf01229508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052832509
130 https://doi.org/10.1007/bf01229508
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10569-009-9234-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030420683
133 https://doi.org/10.1007/s10569-009-9234-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10569-010-9320-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298526
136 https://doi.org/10.1007/s10569-010-9320-4
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/2061240a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020223481
139 https://doi.org/10.1038/2061240a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/2061240b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027983090
142 https://doi.org/10.1038/2061240b0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/208575a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017877812
145 https://doi.org/10.1038/208575a0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/338237a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015108153
148 https://doi.org/10.1038/338237a0
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.440676.7 schema:alternateName Moscow State University for Geodesy and Cartography, 105064, Moscow, Russia
151 schema:name DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany
152 Moscow State University for Geodesy and Cartography, 105064, Moscow, Russia
153 rdf:type schema:Organization
154 grid-institutes:grid.7551.6 schema:alternateName DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany
155 schema:name DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...