Ontology type: schema:ScholarlyArticle Open Access: True
2015-07-21
AUTHORSAlexander Stark, Jürgen Oberst, Hauke Hussmann
ABSTRACTWe used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period of (87.96934962±0.00000037)days\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(87.96934962 \pm 0.00000037)\,\hbox {days}$$\end{document} and (assuming a perfect resonance) a spin rate of (6.138506839±0.000000028)∘/day\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6.138506839\pm 0.000000028){}^{\circ }/\hbox {day}$$\end{document}. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury’s rotation. More... »
PAGES263-277
http://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4
DOIhttp://dx.doi.org/10.1007/s10569-015-9633-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050375485
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany",
"id": "http://www.grid.ac/institutes/grid.7551.6",
"name": [
"DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Stark",
"givenName": "Alexander",
"id": "sg:person.016143566315.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143566315.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow State University for Geodesy and Cartography, 105064, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.440676.7",
"name": [
"DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany",
"Moscow State University for Geodesy and Cartography, 105064, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Oberst",
"givenName": "J\u00fcrgen",
"id": "sg:person.0642304505.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany",
"id": "http://www.grid.ac/institutes/grid.7551.6",
"name": [
"DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Hussmann",
"givenName": "Hauke",
"id": "sg:person.014476374441.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476374441.74"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10569-010-9320-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039298526",
"https://doi.org/10.1007/s10569-010-9320-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/2061240a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020223481",
"https://doi.org/10.1038/2061240a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/208575a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017877812",
"https://doi.org/10.1038/208575a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/2061240b0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027983090",
"https://doi.org/10.1038/2061240b0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/338237a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015108153",
"https://doi.org/10.1038/338237a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10569-009-9234-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030420683",
"https://doi.org/10.1007/s10569-009-9234-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-48918-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005497370",
"https://doi.org/10.1007/978-0-387-48918-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01229508",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052832509",
"https://doi.org/10.1007/bf01229508"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-07-21",
"datePublishedReg": "2015-07-21",
"description": "We used recently produced Solar System ephemerides, which incorporate 2\u00a0years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet\u2019s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury\u2019s interior structure. In particular, we derive a mean orbital period of (87.96934962\u00b10.00000037)days\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(87.96934962 \\pm 0.00000037)\\,\\hbox {days}$$\\end{document} and (assuming a perfect resonance) a spin rate of (6.138506839\u00b10.000000028)\u2218/day\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(6.138506839\\pm 0.000000028){}^{\\circ }/\\hbox {day}$$\\end{document}. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101\u2013135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67\u00a0m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury\u2019s rotation.",
"genre": "article",
"id": "sg:pub.10.1007/s10569-015-9633-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4896989",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "123"
}
],
"keywords": [
"orbital elements",
"resonant rotation",
"solar system ephemerides",
"spin-orbit resonance",
"Mercury\u2019s interior structure",
"interior structure",
"mean orbital period",
"rotation rate",
"MESSENGER spacecraft",
"orbital period",
"Mercury's rotation",
"spin rate",
"planets",
"rotational parameters",
"physical interpretation",
"physical parameters",
"ephemeris",
"spacecraft",
"rotation",
"resonance",
"equator",
"calculations",
"plane",
"mercury",
"parameters",
"longitudinal displacement",
"structure",
"orientation",
"elements",
"uncertainty",
"displacement",
"values",
"important reference",
"interpretation",
"rate",
"turn",
"basic approach",
"Laplace",
"reference",
"approach",
"analysis",
"differences",
"approx",
"period",
"years",
"observations"
],
"name": "Mercury\u2019s resonant rotation from secular orbital elements",
"pagination": "263-277",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050375485"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10569-015-9633-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10569-015-9633-4",
"https://app.dimensions.ai/details/publication/pub.1050375485"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_652.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10569-015-9633-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-015-9633-4'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
22 PREDICATES
79 URIs
63 LITERALS
6 BLANK NODES