Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02

AUTHORS

Rocío Isabel Páez, Christos Efthymiopoulos

ABSTRACT

The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, H=Hb+Hsec. Hb, called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while Hsec contains only terms depending trigonometrically on slow (secular) angles. Hb is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of ‘modulational diffusion’. In the paper’s numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the secondary resonances from 1:5 to 1:12 (ratio of the short over the synodic period), as well as their transverse resonant multiplets, appear. We give numerical examples of diffusion of weakly chaotic orbits in the resonant web. We finally make a statistics of the escaping times in the resonant domain, and find power-law tails of the distribution of the escaping times for the slowly diffusing chaotic orbits. Implications of resonant dynamics in the search for Trojan exoplanets are discussed. More... »

PAGES

139-170

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10569-014-9591-2

DOI

http://dx.doi.org/10.1007/s10569-014-9591-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010547136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, University of Rome \u201cTor Vergata\u201d, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e1ez", 
        "givenName": "Roc\u00edo Isabel", 
        "id": "sg:person.013057725522.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057725522.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Athens", 
          "id": "https://www.grid.ac/institutes/grid.417593.d", 
          "name": [
            "Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Efthymiopoulos", 
        "givenName": "Christos", 
        "id": "sg:person.015742741761.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742741761.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1086/345359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004622807", 
          "https://doi.org/10.1007/bf01234573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2011.20310.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005898737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-004-5976-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005927634", 
          "https://doi.org/10.1007/s10569-004-5976-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-004-5976-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005927634", 
          "https://doi.org/10.1007/s10569-004-5976-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-004-3114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008755269", 
          "https://doi.org/10.1007/s10569-004-3114-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-004-3114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008755269", 
          "https://doi.org/10.1007/s10569-004-3114-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009246711", 
          "https://doi.org/10.1007/bf00692462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2007.12228.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011549783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2009.15280.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2009.15280.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008385726569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012789460", 
          "https://doi.org/10.1023/a:1008385726569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2007.12794.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014479194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2005.09572.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016561476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2005.09572.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016561476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2966.2003.07051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017940434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-013-9501-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017966435", 
          "https://doi.org/10.1007/s10569-013-9501-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-009-9227-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023628480", 
          "https://doi.org/10.1007/s10569-009-9227-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-009-9227-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023628480", 
          "https://doi.org/10.1007/s10569-009-9227-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-009-9227-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023628480", 
          "https://doi.org/10.1007/s10569-009-9227-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2012.21121.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026640971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029073521", 
          "https://doi.org/10.1007/bf00048444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029073521", 
          "https://doi.org/10.1007/bf00048444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(90)90910-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029367645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(90)90910-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029367645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/icar.2001.6699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029435126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385042a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036924161", 
          "https://doi.org/10.1038/385042a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-004-3975-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037024995", 
          "https://doi.org/10.1007/s10569-004-3975-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-004-3975-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037024995", 
          "https://doi.org/10.1007/s10569-004-3975-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-009-9197-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037694918", 
          "https://doi.org/10.1007/s10569-009-9197-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-009-9197-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037694918", 
          "https://doi.org/10.1007/s10569-009-9197-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-009-9197-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037694918", 
          "https://doi.org/10.1007/s10569-009-9197-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2006.11008.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038203178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90084-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040062540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90084-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040062540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-013-9510-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040936387", 
          "https://doi.org/10.1007/s10569-013-9510-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-013-9507-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046912364", 
          "https://doi.org/10.1007/s10569-013-9507-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90091-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048129118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90091-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048129118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049639183", 
          "https://doi.org/10.1007/bf00048985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049639183", 
          "https://doi.org/10.1007/bf00048985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2013.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052503866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/341173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052796218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:20010141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056926625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:200400075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056932737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:20066582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056938036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:20077994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056939086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:200810705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056940974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:200810797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056941024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/109859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/110196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/110812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058449391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/112060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058450639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/30/23/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059075727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/18/4/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/18/4/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.4661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.4661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5487.2108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062571000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130930224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871074"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02", 
    "datePublishedReg": "2015-02-01", 
    "description": "The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, H=Hb+Hsec. Hb, called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while Hsec contains only terms depending trigonometrically on slow (secular) angles. Hb is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of \u2018modulational diffusion\u2019. In the paper\u2019s numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the secondary resonances from 1:5 to 1:12 (ratio of the short over the synodic period), as well as their transverse resonant multiplets, appear. We give numerical examples of diffusion of weakly chaotic orbits in the resonant web. We finally make a statistics of the escaping times in the resonant domain, and find power-law tails of the distribution of the escaping times for the slowly diffusing chaotic orbits. Implications of resonant dynamics in the search for Trojan exoplanets are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10569-014-9591-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "121"
      }
    ], 
    "name": "Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems", 
    "pagination": "139-170", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "323f1d46cd36308fade370eded6492e8ef2131b65e72f588b74f222dc3c73c83"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10569-014-9591-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010547136"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10569-014-9591-2", 
      "https://app.dimensions.ai/details/publication/pub.1010547136"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10569-014-9591-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-014-9591-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-014-9591-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-014-9591-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-014-9591-2'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10569-014-9591-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3e9d2b93470340ebbc4f8c09eb3666ce
4 schema:citation sg:pub.10.1007/bf00048444
5 sg:pub.10.1007/bf00048985
6 sg:pub.10.1007/bf00692462
7 sg:pub.10.1007/bf01234573
8 sg:pub.10.1007/s10569-004-3114-5
9 sg:pub.10.1007/s10569-004-3975-7
10 sg:pub.10.1007/s10569-004-5976-y
11 sg:pub.10.1007/s10569-009-9197-2
12 sg:pub.10.1007/s10569-009-9227-0
13 sg:pub.10.1007/s10569-013-9501-z
14 sg:pub.10.1007/s10569-013-9507-6
15 sg:pub.10.1007/s10569-013-9510-y
16 sg:pub.10.1023/a:1008385726569
17 sg:pub.10.1038/385042a0
18 https://doi.org/10.1006/icar.2001.6699
19 https://doi.org/10.1016/0019-1035(90)90084-m
20 https://doi.org/10.1016/0167-2789(85)90091-0
21 https://doi.org/10.1016/0375-9601(90)90910-g
22 https://doi.org/10.1016/j.icarus.2013.06.020
23 https://doi.org/10.1046/j.1365-2966.2003.07051.x
24 https://doi.org/10.1051/0004-6361:20010141
25 https://doi.org/10.1051/0004-6361:200400075
26 https://doi.org/10.1051/0004-6361:20066582
27 https://doi.org/10.1051/0004-6361:20077994
28 https://doi.org/10.1051/0004-6361:200810705
29 https://doi.org/10.1051/0004-6361:200810797
30 https://doi.org/10.1086/109859
31 https://doi.org/10.1086/110196
32 https://doi.org/10.1086/110812
33 https://doi.org/10.1086/112060
34 https://doi.org/10.1086/341173
35 https://doi.org/10.1086/345359
36 https://doi.org/10.1088/0305-4470/30/23/016
37 https://doi.org/10.1088/0951-7715/18/4/017
38 https://doi.org/10.1103/physreva.46.4661
39 https://doi.org/10.1103/revmodphys.64.795
40 https://doi.org/10.1111/j.1365-2966.2005.09572.x
41 https://doi.org/10.1111/j.1365-2966.2006.11008.x
42 https://doi.org/10.1111/j.1365-2966.2007.12228.x
43 https://doi.org/10.1111/j.1365-2966.2007.12794.x
44 https://doi.org/10.1111/j.1365-2966.2009.15280.x
45 https://doi.org/10.1111/j.1365-2966.2011.20310.x
46 https://doi.org/10.1111/j.1365-2966.2012.21121.x
47 https://doi.org/10.1126/science.289.5487.2108
48 https://doi.org/10.1137/130930224
49 schema:datePublished 2015-02
50 schema:datePublishedReg 2015-02-01
51 schema:description The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, H=Hb+Hsec. Hb, called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while Hsec contains only terms depending trigonometrically on slow (secular) angles. Hb is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of ‘modulational diffusion’. In the paper’s numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the secondary resonances from 1:5 to 1:12 (ratio of the short over the synodic period), as well as their transverse resonant multiplets, appear. We give numerical examples of diffusion of weakly chaotic orbits in the resonant web. We finally make a statistics of the escaping times in the resonant domain, and find power-law tails of the distribution of the escaping times for the slowly diffusing chaotic orbits. Implications of resonant dynamics in the search for Trojan exoplanets are discussed.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N2f917f8eb4da49b8bd12e7a3b2a09d41
56 Ne0829ac6ba5c4a2692a333f4779e9f30
57 sg:journal.1136436
58 schema:name Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems
59 schema:pagination 139-170
60 schema:productId N3c4246eb68674dcaa3851af8b97a8cd9
61 N764783a054db4ba0a4171c9f02c349ba
62 Nc993ed947db34fdc962b01c2b2542fb3
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010547136
64 https://doi.org/10.1007/s10569-014-9591-2
65 schema:sdDatePublished 2019-04-10T18:20
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Ne76ea1d4e42848faa6a765274efd9aa2
68 schema:url http://link.springer.com/10.1007%2Fs10569-014-9591-2
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N2f917f8eb4da49b8bd12e7a3b2a09d41 schema:volumeNumber 121
73 rdf:type schema:PublicationVolume
74 N3c4246eb68674dcaa3851af8b97a8cd9 schema:name readcube_id
75 schema:value 323f1d46cd36308fade370eded6492e8ef2131b65e72f588b74f222dc3c73c83
76 rdf:type schema:PropertyValue
77 N3e9d2b93470340ebbc4f8c09eb3666ce rdf:first sg:person.013057725522.23
78 rdf:rest N831e0c4094b741d7945e5c0b39519400
79 N764783a054db4ba0a4171c9f02c349ba schema:name dimensions_id
80 schema:value pub.1010547136
81 rdf:type schema:PropertyValue
82 N831e0c4094b741d7945e5c0b39519400 rdf:first sg:person.015742741761.20
83 rdf:rest rdf:nil
84 Nc993ed947db34fdc962b01c2b2542fb3 schema:name doi
85 schema:value 10.1007/s10569-014-9591-2
86 rdf:type schema:PropertyValue
87 Ne0829ac6ba5c4a2692a333f4779e9f30 schema:issueNumber 2
88 rdf:type schema:PublicationIssue
89 Ne76ea1d4e42848faa6a765274efd9aa2 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
95 schema:name Pure Mathematics
96 rdf:type schema:DefinedTerm
97 sg:journal.1136436 schema:issn 0008-8714
98 0923-2958
99 schema:name Celestial Mechanics and Dynamical Astronomy
100 rdf:type schema:Periodical
101 sg:person.013057725522.23 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
102 schema:familyName Páez
103 schema:givenName Rocío Isabel
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057725522.23
105 rdf:type schema:Person
106 sg:person.015742741761.20 schema:affiliation https://www.grid.ac/institutes/grid.417593.d
107 schema:familyName Efthymiopoulos
108 schema:givenName Christos
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742741761.20
110 rdf:type schema:Person
111 sg:pub.10.1007/bf00048444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029073521
112 https://doi.org/10.1007/bf00048444
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00048985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049639183
115 https://doi.org/10.1007/bf00048985
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00692462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009246711
118 https://doi.org/10.1007/bf00692462
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01234573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004622807
121 https://doi.org/10.1007/bf01234573
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10569-004-3114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008755269
124 https://doi.org/10.1007/s10569-004-3114-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10569-004-3975-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037024995
127 https://doi.org/10.1007/s10569-004-3975-7
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10569-004-5976-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005927634
130 https://doi.org/10.1007/s10569-004-5976-y
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10569-009-9197-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037694918
133 https://doi.org/10.1007/s10569-009-9197-2
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10569-009-9227-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023628480
136 https://doi.org/10.1007/s10569-009-9227-0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10569-013-9501-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017966435
139 https://doi.org/10.1007/s10569-013-9501-z
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10569-013-9507-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046912364
142 https://doi.org/10.1007/s10569-013-9507-6
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10569-013-9510-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040936387
145 https://doi.org/10.1007/s10569-013-9510-y
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/a:1008385726569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012789460
148 https://doi.org/10.1023/a:1008385726569
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/385042a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036924161
151 https://doi.org/10.1038/385042a0
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1006/icar.2001.6699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029435126
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0019-1035(90)90084-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1040062540
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0167-2789(85)90091-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048129118
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0375-9601(90)90910-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1029367645
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.icarus.2013.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052503866
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1046/j.1365-2966.2003.07051.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017940434
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1051/0004-6361:20010141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056926625
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1051/0004-6361:200400075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056932737
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1051/0004-6361:20066582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056938036
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1051/0004-6361:20077994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056939086
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1051/0004-6361:200810705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056940974
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1051/0004-6361:200810797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056941024
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1086/109859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448477
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1086/110196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448797
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1086/110812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449391
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1086/112060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058450639
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1086/341173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052796218
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1086/345359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001182465
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1088/0305-4470/30/23/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059075727
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/0951-7715/18/4/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109400
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physreva.46.4661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486287
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/revmodphys.64.795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839265
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/j.1365-2966.2005.09572.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016561476
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1365-2966.2006.11008.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038203178
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1365-2966.2007.12228.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011549783
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1365-2966.2007.12794.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014479194
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1365-2966.2009.15280.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012075446
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1365-2966.2011.20310.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005898737
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1365-2966.2012.21121.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026640971
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.289.5487.2108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062571000
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1137/130930224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871074
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.417593.d schema:alternateName Academy of Athens
216 schema:name Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens, Greece
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
219 schema:name Department of Mathematics, University of Rome “Tor Vergata”, Rome, Italy
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...