Ontology type: schema:ScholarlyArticle Open Access: True
2011-11
AUTHORSMarco Sansottera, Ugo Locatelli, Antonio Giorgilli
ABSTRACTWe adapt the Kolmogorov’s normalization algorithm (which is the key element of the original proof scheme of the KAM theorem) to the construction of a suitable normal form related to an invariant elliptic torus. As a byproduct, our procedure can also provide some analytic expansions of the motions on elliptic tori. By extensively using algebraic manipulations on a computer, we explicitly apply our method to a planar four-body model not too different with respect to the real Sun–Jupiter–Saturn–Uranus system. The frequency analysis method allows us to check that our location of the initial conditions on an invariant elliptic torus is really accurate. More... »
PAGES337
http://scigraph.springernature.com/pub.10.1007/s10569-011-9375-x
DOIhttp://dx.doi.org/10.1007/s10569-011-9375-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024463109
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Milan",
"id": "https://www.grid.ac/institutes/grid.4708.b",
"name": [
"Dipartimento di Matematica, Universit\u00e0 degli Studi di Milano, via Saldini 50, 20133, Milan, Italy"
],
"type": "Organization"
},
"familyName": "Sansottera",
"givenName": "Marco",
"id": "sg:person.012027575165.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012027575165.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica 1, 00133, Rome, Italy"
],
"type": "Organization"
},
"familyName": "Locatelli",
"givenName": "Ugo",
"id": "sg:person.07637253565.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07637253565.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Milan",
"id": "https://www.grid.ac/institutes/grid.4708.b",
"name": [
"Dipartimento di Matematica, Universit\u00e0 degli Studi di Milano, via Saldini 50, 20133, Milan, Italy"
],
"type": "Organization"
},
"familyName": "Giorgilli",
"givenName": "Antonio",
"id": "sg:person.010532704656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01227790",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001288867",
"https://doi.org/10.1007/bf01227790"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01227790",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001288867",
"https://doi.org/10.1007/bf01227790"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-4673-9_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001742488",
"https://doi.org/10.1007/978-94-011-4673-9_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003329900036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006186500",
"https://doi.org/10.1007/s003329900036"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00205-003-0269-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008228544",
"https://doi.org/10.1007/s00205-003-0269-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1011139523256",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009130340",
"https://doi.org/10.1023/a:1011139523256"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-1085-1_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011111714",
"https://doi.org/10.1007/978-1-4899-1085-1_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01221590",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013571657",
"https://doi.org/10.1007/bf01221590"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01221590",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013571657",
"https://doi.org/10.1007/bf01221590"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-2789(97)00194-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014308649"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00692088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016401816",
"https://doi.org/10.1007/bf00692088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00692089",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016738552",
"https://doi.org/10.1007/bf00692089"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008321605028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021283593",
"https://doi.org/10.1023/a:1008321605028"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10569-009-9192-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021916524",
"https://doi.org/10.1007/s10569-009-9192-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10569-009-9192-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021916524",
"https://doi.org/10.1007/s10569-009-9192-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1012098603882",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031332680",
"https://doi.org/10.1023/a:1012098603882"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02742713",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031864213",
"https://doi.org/10.1007/bf02742713"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.matcom.2010.11.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039296165"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/pl00001475",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042122109",
"https://doi.org/10.1007/pl00001475"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01234305",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047310995",
"https://doi.org/10.1007/bf01234305"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01234305",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047310995",
"https://doi.org/10.1007/bf01234305"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1020392219443",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047888581",
"https://doi.org/10.1023/a:1020392219443"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02748972",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049886350",
"https://doi.org/10.1007/bf02748972"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/109964",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058448574"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/10/4/001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059108707"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/13/2/304",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059108913"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/18/4/017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059109400"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/18/4/017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059109400"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036141004443646",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062876034"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/dcdsb.2001.1.143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071735811"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/dcdsb.2007.7.377",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071736148"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-11",
"datePublishedReg": "2011-11-01",
"description": "We adapt the Kolmogorov\u2019s normalization algorithm (which is the key element of the original proof scheme of the KAM theorem) to the construction of a suitable normal form related to an invariant elliptic torus. As a byproduct, our procedure can also provide some analytic expansions of the motions on elliptic tori. By extensively using algebraic manipulations on a computer, we explicitly apply our method to a planar four-body model not too different with respect to the real Sun\u2013Jupiter\u2013Saturn\u2013Uranus system. The frequency analysis method allows us to check that our location of the initial conditions on an invariant elliptic torus is really accurate.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10569-011-9375-x",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0008-8714",
"0923-2958"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "111"
}
],
"name": "A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems",
"pagination": "337",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"748b46284bea161886e9e54c33ec8d34324142a768e709cba965bf57b21170ae"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10569-011-9375-x"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024463109"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10569-011-9375-x",
"https://app.dimensions.ai/details/publication/pub.1024463109"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T21:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000512.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10569-011-9375-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-011-9375-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-011-9375-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-011-9375-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-011-9375-x'
This table displays all metadata directly associated to this object as RDF triples.
173 TRIPLES
21 PREDICATES
53 URIs
19 LITERALS
7 BLANK NODES