The Moon’s physical librations and determination of their free modes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10-26

AUTHORS

N. Rambaux, J. G. Williams

ABSTRACT

The Lunar Laser Ranging experiment has been active since 1969 when Apollo astronauts placed the first retroreflector on the Moon. The data accuracy of a few centimeters over recent decades, joined to a new numerically integrated ephemeris, DE421, encourages a new analysis of the lunar physical librations of that ephemeris, and especially the detection of three modes of free physical librations (longitude, latitude, and wobble modes). This analysis was performed by iterating a frequency analysis and linear least-squares fit of the wide spectrum of DE421 lunar physical librations. From this analysis we identified and estimated about 130–140 terms in the angular series of latitude librations and polar coordinates, and 89 terms in the longitude angle. In this determination, we found the non-negligible amplitudes of the three modes of free physical libration. The determined amplitudes reach 1.296′′ in longitude (after correction of two close forcing terms), 0.032′′ in latitude and 8.183′′ × 3.306′′ for the wobble, with the respective periods of 1056.13 days, 8822.88 days (referred to the moving node), and 27257.27 days. The presence of such terms despite damping suggests the existence of some source of stimulation acting in geologically recent times. More... »

PAGES

85-100

References to SciGraph publications

  • 1982-11. Analytical theory of the libration of the Moon in EARTH, MOON, AND PLANETS
  • 1977. Free Librations of the Moon from Lunar Laser Ranging in SCIENTIFIC APPLICATIONS OF LUNAR LASER RANGING
  • 1984-09. Planetary perturbations on the Libration of the Moon in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2006-03. Report of the International Astronomical Union Division I Working Group on Precession and the Ecliptic in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1996-06. Determination of some physical parameters of the Moon with Lunar Laser Ranging data in EARTH, MOON, AND PLANETS
  • 1996-03. Estimation of the lunar physical librations in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1984. Planetary Perturbations on the Libration of the Moon in THE STABILITY OF PLANETARY SYSTEMS
  • 1999-01. Complements to Moons'1 Lunar Libration Theory in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1996-04. Analytical extension of lunar libration tables in EARTH, MOON, AND PLANETS
  • 1993-10. Passing through resonance: The excitation and dissipation of the lunar free libration in longitude in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1981-08. Theory of the libration of the moon in EARTH, MOON, AND PLANETS
  • 1976-09. Free librations of the moon determined by an analysis of laser range measurements in EARTH, MOON, AND PLANETS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10569-010-9314-2

    DOI

    http://dx.doi.org/10.1007/s10569-010-9314-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037551732


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.211367.0", 
              "name": [
                "Universit\u00e9 Pierre et Marie Curie, Paris 6, IMCCE, Observatoire de Paris, CNRS UMR 8028, 77 Avenue Denfert-Rochereau, 75014, Paris, France", 
                "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rambaux", 
            "givenName": "N.", 
            "id": "sg:person.014525312356.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525312356.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.211367.0", 
              "name": [
                "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "J. G.", 
            "id": "sg:person.013223722314.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013223722314.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008379921055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033044472", 
              "https://doi.org/10.1023/a:1008379921055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051219797", 
              "https://doi.org/10.1007/bf00058046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-006-0001-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006660509", 
              "https://doi.org/10.1007/s10569-006-0001-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00048820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020673933", 
              "https://doi.org/10.1007/bf00048820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00562246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008019786", 
              "https://doi.org/10.1007/bf00562246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-5331-4_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033777761", 
              "https://doi.org/10.1007/978-94-009-5331-4_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00115884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041744385", 
              "https://doi.org/10.1007/bf00115884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-1208-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050854608", 
              "https://doi.org/10.1007/978-94-010-1208-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00692481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019911730", 
              "https://doi.org/10.1007/bf00692481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00911807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000463990", 
              "https://doi.org/10.1007/bf00911807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00929297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053560603", 
              "https://doi.org/10.1007/bf00929297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01235808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052079600", 
              "https://doi.org/10.1007/bf01235808"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-10-26", 
        "datePublishedReg": "2010-10-26", 
        "description": "The Lunar Laser Ranging experiment has been active since 1969 when Apollo astronauts placed the first retroreflector on the Moon. The data accuracy of a few centimeters over recent decades, joined to a new numerically integrated ephemeris, DE421, encourages a new analysis of the lunar physical librations of that ephemeris, and especially the detection of three modes of free physical librations (longitude, latitude, and wobble modes). This analysis was performed by iterating a frequency analysis and linear least-squares fit of the wide spectrum of DE421 lunar physical librations. From this analysis we identified and estimated about 130\u2013140 terms in the angular series of latitude librations and polar coordinates, and 89 terms in the longitude angle. In this determination, we found the non-negligible amplitudes of the three modes of free physical libration. The determined amplitudes reach 1.296\u2032\u2032 in longitude (after correction of two close forcing terms), 0.032\u2032\u2032 in latitude and 8.183\u2032\u2032 \u00d7 3.306\u2032\u2032 for the wobble, with the respective periods of 1056.13\u00a0days, 8822.88\u00a0days (referred to the moving node), and 27257.27\u00a0days. The presence of such terms despite damping suggests the existence of some source of stimulation acting in geologically recent times.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10569-010-9314-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "109"
          }
        ], 
        "keywords": [
          "lunar laser", 
          "Apollo astronauts", 
          "astronauts", 
          "Moon", 
          "data accuracy", 
          "centimeters", 
          "recent decades", 
          "decades", 
          "ephemeris", 
          "new analysis", 
          "analysis", 
          "lunar physical librations", 
          "physical libration", 
          "libration", 
          "detection", 
          "mode", 
          "frequency analysis", 
          "linear least-squares fit", 
          "wide spectrum", 
          "terms", 
          "series", 
          "polar coordinates", 
          "determination", 
          "non-negligible amplitude", 
          "amplitude", 
          "longitude", 
          "latitudes", 
          "wobble", 
          "respective periods", 
          "period", 
          "days", 
          "presence", 
          "such terms", 
          "damping", 
          "source of stimulation", 
          "stimulation", 
          "recent times", 
          "time", 
          "Moon's physical librations", 
          "free modes", 
          "laser", 
          "experiments", 
          "first retroreflector", 
          "retroreflector", 
          "accuracy", 
          "DE421", 
          "free physical librations", 
          "least-squares fit", 
          "fit", 
          "spectra", 
          "DE421 lunar physical librations", 
          "angular series", 
          "latitude librations", 
          "coordinates", 
          "longitude angle", 
          "angle", 
          "existence", 
          "source"
        ], 
        "name": "The Moon\u2019s physical librations and determination of their free modes", 
        "pagination": "85-100", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037551732"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10569-010-9314-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10569-010-9314-2", 
          "https://app.dimensions.ai/details/publication/pub.1037551732"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_507.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10569-010-9314-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-010-9314-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-010-9314-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-010-9314-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-010-9314-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      22 PREDICATES      95 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10569-010-9314-2 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nc3448b8b1cf54b4faa5d44bdb2d5e26f
    4 schema:citation sg:pub.10.1007/978-94-009-5331-4_24
    5 sg:pub.10.1007/978-94-010-1208-9_6
    6 sg:pub.10.1007/bf00048820
    7 sg:pub.10.1007/bf00058046
    8 sg:pub.10.1007/bf00115884
    9 sg:pub.10.1007/bf00562246
    10 sg:pub.10.1007/bf00692481
    11 sg:pub.10.1007/bf00911807
    12 sg:pub.10.1007/bf00929297
    13 sg:pub.10.1007/bf01235808
    14 sg:pub.10.1007/s10569-006-0001-2
    15 sg:pub.10.1023/a:1008379921055
    16 schema:datePublished 2010-10-26
    17 schema:datePublishedReg 2010-10-26
    18 schema:description The Lunar Laser Ranging experiment has been active since 1969 when Apollo astronauts placed the first retroreflector on the Moon. The data accuracy of a few centimeters over recent decades, joined to a new numerically integrated ephemeris, DE421, encourages a new analysis of the lunar physical librations of that ephemeris, and especially the detection of three modes of free physical librations (longitude, latitude, and wobble modes). This analysis was performed by iterating a frequency analysis and linear least-squares fit of the wide spectrum of DE421 lunar physical librations. From this analysis we identified and estimated about 130–140 terms in the angular series of latitude librations and polar coordinates, and 89 terms in the longitude angle. In this determination, we found the non-negligible amplitudes of the three modes of free physical libration. The determined amplitudes reach 1.296′′ in longitude (after correction of two close forcing terms), 0.032′′ in latitude and 8.183′′ × 3.306′′ for the wobble, with the respective periods of 1056.13 days, 8822.88 days (referred to the moving node), and 27257.27 days. The presence of such terms despite damping suggests the existence of some source of stimulation acting in geologically recent times.
    19 schema:genre article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N60fc1e72e7144dc6915377961048db11
    23 Ndaf175039e4d40408f76913773cb46ad
    24 sg:journal.1136436
    25 schema:keywords Apollo astronauts
    26 DE421
    27 DE421 lunar physical librations
    28 Moon
    29 Moon's physical librations
    30 accuracy
    31 amplitude
    32 analysis
    33 angle
    34 angular series
    35 astronauts
    36 centimeters
    37 coordinates
    38 damping
    39 data accuracy
    40 days
    41 decades
    42 detection
    43 determination
    44 ephemeris
    45 existence
    46 experiments
    47 first retroreflector
    48 fit
    49 free modes
    50 free physical librations
    51 frequency analysis
    52 laser
    53 latitude librations
    54 latitudes
    55 least-squares fit
    56 libration
    57 linear least-squares fit
    58 longitude
    59 longitude angle
    60 lunar laser
    61 lunar physical librations
    62 mode
    63 new analysis
    64 non-negligible amplitude
    65 period
    66 physical libration
    67 polar coordinates
    68 presence
    69 recent decades
    70 recent times
    71 respective periods
    72 retroreflector
    73 series
    74 source
    75 source of stimulation
    76 spectra
    77 stimulation
    78 such terms
    79 terms
    80 time
    81 wide spectrum
    82 wobble
    83 schema:name The Moon’s physical librations and determination of their free modes
    84 schema:pagination 85-100
    85 schema:productId N743ebb0960ee4beea54f84838ac502bb
    86 N7940198249f840f89305829ea44d371e
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037551732
    88 https://doi.org/10.1007/s10569-010-9314-2
    89 schema:sdDatePublished 2022-01-01T18:22
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher Nf9d0bb85ab8644cab364ceedab85e9e3
    92 schema:url https://doi.org/10.1007/s10569-010-9314-2
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N60fc1e72e7144dc6915377961048db11 schema:issueNumber 1
    97 rdf:type schema:PublicationIssue
    98 N743ebb0960ee4beea54f84838ac502bb schema:name doi
    99 schema:value 10.1007/s10569-010-9314-2
    100 rdf:type schema:PropertyValue
    101 N7940198249f840f89305829ea44d371e schema:name dimensions_id
    102 schema:value pub.1037551732
    103 rdf:type schema:PropertyValue
    104 Nb1f4c972a15f482098901a63216d54a1 rdf:first sg:person.013223722314.73
    105 rdf:rest rdf:nil
    106 Nc3448b8b1cf54b4faa5d44bdb2d5e26f rdf:first sg:person.014525312356.74
    107 rdf:rest Nb1f4c972a15f482098901a63216d54a1
    108 Ndaf175039e4d40408f76913773cb46ad schema:volumeNumber 109
    109 rdf:type schema:PublicationVolume
    110 Nf9d0bb85ab8644cab364ceedab85e9e3 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Mathematical Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Applied Mathematics
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1136436 schema:issn 0008-8714
    119 0923-2958
    120 schema:name Celestial Mechanics and Dynamical Astronomy
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.013223722314.73 schema:affiliation grid-institutes:grid.211367.0
    124 schema:familyName Williams
    125 schema:givenName J. G.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013223722314.73
    127 rdf:type schema:Person
    128 sg:person.014525312356.74 schema:affiliation grid-institutes:grid.211367.0
    129 schema:familyName Rambaux
    130 schema:givenName N.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525312356.74
    132 rdf:type schema:Person
    133 sg:pub.10.1007/978-94-009-5331-4_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033777761
    134 https://doi.org/10.1007/978-94-009-5331-4_24
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-94-010-1208-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050854608
    137 https://doi.org/10.1007/978-94-010-1208-9_6
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf00048820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020673933
    140 https://doi.org/10.1007/bf00048820
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf00058046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051219797
    143 https://doi.org/10.1007/bf00058046
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf00115884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041744385
    146 https://doi.org/10.1007/bf00115884
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf00562246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008019786
    149 https://doi.org/10.1007/bf00562246
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00692481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019911730
    152 https://doi.org/10.1007/bf00692481
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf00911807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000463990
    155 https://doi.org/10.1007/bf00911807
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf00929297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053560603
    158 https://doi.org/10.1007/bf00929297
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf01235808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052079600
    161 https://doi.org/10.1007/bf01235808
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s10569-006-0001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006660509
    164 https://doi.org/10.1007/s10569-006-0001-2
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1023/a:1008379921055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033044472
    167 https://doi.org/10.1023/a:1008379921055
    168 rdf:type schema:CreativeWork
    169 grid-institutes:grid.211367.0 schema:alternateName Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA
    170 schema:name Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA
    171 Université Pierre et Marie Curie, Paris 6, IMCCE, Observatoire de Paris, CNRS UMR 8028, 77 Avenue Denfert-Rochereau, 75014, Paris, France
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...