Injection of Oort Cloud comets: the fundamental role of stellar perturbations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-06-12

AUTHORS

Hans Rickman, Marc Fouchard, Christiane Froeschlé, Giovanni B. Valsecchi

ABSTRACT

We present Monte Carlo simulations of the dynamical evolution of the Oort cloud over the age of the Solar System, using an initial sample of one million test comets without any cloning. Our model includes perturbations due to the Galactic tide (radial and vertical) and passing stars. We present the first detailed analysis of the injection mechanism into observable orbits by comparing the complete model with separate models for tidal and stellar perturbations alone. We find that a fundamental role for injecting comets from the region outside the loss cone (perihelion distance q > 15 AU) into observable orbits (q < 5 AU) is played by stellar perturbations. These act in synergy with the tide such that the total injection rate is significantly larger than the sum of the two separate rates. This synergy is as important during comet showers as during quiescent periods and concerns comets with both small and large semi-major axes. We propose different dynamical mechanisms to explain the synergies in the inner and outer parts of the Oort Cloud. We find that the filling of the observable part of the loss cone under normal conditions in the present-day Solar System rises from <1% for a < 20 000 AU to about 100% for a ≳ 100 000 AU. More... »

PAGES

111-132

References to SciGraph publications

  • 1979. Physical and Dynamical Evolution of Long-Period Comets in DYNAMICS OF THE SOLAR SYSTEM
  • 2006-05. Long-term effects of the Galactic tide on cometary dynamics in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1988. Galactic tides affect the Oort cloud: an observational confirmation in EXPLORATION OF HALLEY’S COMET
  • 2001-05. High order symplectic integrators for perturbed Hamiltonian systems in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1985. An Efficient Integrator that Uses Gauss-Radau Spacings in DYNAMICS OF COMETS: THEIR ORIGIN AND EVOLUTION
  • 2007-01-01. Methods for the Study of the Dynamics of the Oort Cloud Comets II: Modelling the Galactic Tide in TOPICS IN GRAVITATIONAL DYNAMICS
  • 1986-11. The effect of the Galaxy on cometary orbits in EARTH, MOON, AND PLANETS
  • 2005-12. Algorithms for Stellar Perturbation Computations on Oort Cloud Comets in EARTH, MOON, AND PLANETS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10569-008-9140-y

    DOI

    http://dx.doi.org/10.1007/s10569-008-9140-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006818588


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "PAN Space Research Center, Bartycka 18A, 00-716, Warszawa, Poland", 
                "Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rickman", 
            "givenName": "Hans", 
            "id": "sg:person.07601750547.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601750547.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LAL-IMCCE/USTL, 1 Impasse de l\u2019observatoire, 59000, Lille, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "LAL-IMCCE/USTL, 1 Impasse de l\u2019observatoire, 59000, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fouchard", 
            "givenName": "Marc", 
            "id": "sg:person.015127714775.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Observatoire de la C\u00f4te d\u2019Azur, UMR 6202, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
              "id": "http://www.grid.ac/institutes/grid.440460.2", 
              "name": [
                "Observatoire de la C\u00f4te d\u2019Azur, UMR 6202, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Froeschl\u00e9", 
            "givenName": "Christiane", 
            "id": "sg:person.013202724547.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INAF-IASF, via Fosso del Cavaliere 100, 00133, Roma, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4293.c", 
              "name": [
                "INAF-IASF, via Fosso del Cavaliere 100, 00133, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Valsecchi", 
            "givenName": "Giovanni B.", 
            "id": "sg:person.014712060747.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014712060747.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00055164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014462962", 
              "https://doi.org/10.1007/bf00055164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-5400-7_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053543195", 
              "https://doi.org/10.1007/978-94-009-5400-7_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-82971-0_156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030593848", 
              "https://doi.org/10.1007/978-3-642-82971-0_156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012098603882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031332680", 
              "https://doi.org/10.1023/a:1012098603882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11038-006-9113-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038371305", 
              "https://doi.org/10.1007/s11038-006-9113-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-9256-2_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089816551", 
              "https://doi.org/10.1007/978-94-010-9256-2_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-006-9027-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009416228", 
              "https://doi.org/10.1007/s10569-006-9027-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72984-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002849431", 
              "https://doi.org/10.1007/978-3-540-72984-6_10"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-06-12", 
        "datePublishedReg": "2008-06-12", 
        "description": "We present Monte Carlo simulations of the dynamical evolution of the Oort cloud over the age of the Solar System, using an initial sample of one million test comets without any cloning. Our model includes perturbations due to the Galactic tide (radial and vertical) and passing stars. We present the first detailed analysis of the injection mechanism into observable orbits by comparing the complete model with separate models for tidal and stellar perturbations alone. We find that a fundamental role for injecting comets from the region outside the loss cone (perihelion distance q\u00a0> 15 AU) into observable orbits (q\u00a0< 5 AU) is played by stellar perturbations. These act in synergy with the tide such that the total injection rate is significantly larger than the sum of the two separate rates. This synergy is as important during comet showers as during quiescent periods and concerns comets with both small and large semi-major axes. We propose different dynamical mechanisms to explain the synergies in the inner and outer parts of the Oort Cloud. We find that the filling of the observable part of the loss cone under normal conditions in the present-day Solar System rises from <1% for a\u00a0<\u00a020 000 AU to about 100% for a \u2273 100 000 AU.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10569-008-9140-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0923-2958", 
              "1572-9478"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "keywords": [
          "stellar perturbations", 
          "Oort cloud", 
          "loss cone", 
          "present-day solar system", 
          "solar system", 
          "observable orbits", 
          "large semi-major axes", 
          "semi-major axes", 
          "Galactic tide", 
          "dynamical evolution", 
          "different dynamical mechanisms", 
          "comet showers", 
          "Monte Carlo simulations", 
          "injection mechanism", 
          "dynamical mechanism", 
          "outer part", 
          "observable part", 
          "Carlo simulations", 
          "orbit", 
          "comets", 
          "Au", 
          "cloud", 
          "stars", 
          "showers", 
          "perturbations", 
          "quiescent period", 
          "detailed analysis", 
          "cone", 
          "fundamental role", 
          "first detailed analysis", 
          "complete model", 
          "simulations", 
          "evolution", 
          "axes", 
          "injection rate", 
          "system", 
          "initial sample", 
          "model", 
          "tide", 
          "filling", 
          "region", 
          "mechanism", 
          "samples", 
          "sum", 
          "part", 
          "rate", 
          "conditions", 
          "total injection rate", 
          "synergy", 
          "analysis", 
          "normal conditions", 
          "injection", 
          "role", 
          "separate rates", 
          "period", 
          "separate models", 
          "age", 
          "cloning"
        ], 
        "name": "Injection of Oort Cloud comets: the fundamental role of stellar perturbations", 
        "pagination": "111-132", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006818588"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10569-008-9140-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10569-008-9140-y", 
          "https://app.dimensions.ai/details/publication/pub.1006818588"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_470.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10569-008-9140-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-008-9140-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-008-9140-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-008-9140-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-008-9140-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      22 PREDICATES      91 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10569-008-9140-y schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N6eb38f4ed2b64bcead64c0c6e872508c
    4 schema:citation sg:pub.10.1007/978-3-540-72984-6_10
    5 sg:pub.10.1007/978-3-642-82971-0_156
    6 sg:pub.10.1007/978-94-009-5400-7_17
    7 sg:pub.10.1007/978-94-010-9256-2_47
    8 sg:pub.10.1007/bf00055164
    9 sg:pub.10.1007/s10569-006-9027-8
    10 sg:pub.10.1007/s11038-006-9113-7
    11 sg:pub.10.1023/a:1012098603882
    12 schema:datePublished 2008-06-12
    13 schema:datePublishedReg 2008-06-12
    14 schema:description We present Monte Carlo simulations of the dynamical evolution of the Oort cloud over the age of the Solar System, using an initial sample of one million test comets without any cloning. Our model includes perturbations due to the Galactic tide (radial and vertical) and passing stars. We present the first detailed analysis of the injection mechanism into observable orbits by comparing the complete model with separate models for tidal and stellar perturbations alone. We find that a fundamental role for injecting comets from the region outside the loss cone (perihelion distance q > 15 AU) into observable orbits (q < 5 AU) is played by stellar perturbations. These act in synergy with the tide such that the total injection rate is significantly larger than the sum of the two separate rates. This synergy is as important during comet showers as during quiescent periods and concerns comets with both small and large semi-major axes. We propose different dynamical mechanisms to explain the synergies in the inner and outer parts of the Oort Cloud. We find that the filling of the observable part of the loss cone under normal conditions in the present-day Solar System rises from <1% for a < 20 000 AU to about 100% for a ≳ 100 000 AU.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N6f80a28dd6364e06889d51841a9dc22d
    19 Ncdda8ad1bfc442b8b77ae3861338bee4
    20 sg:journal.1136436
    21 schema:keywords Au
    22 Carlo simulations
    23 Galactic tide
    24 Monte Carlo simulations
    25 Oort cloud
    26 age
    27 analysis
    28 axes
    29 cloning
    30 cloud
    31 comet showers
    32 comets
    33 complete model
    34 conditions
    35 cone
    36 detailed analysis
    37 different dynamical mechanisms
    38 dynamical evolution
    39 dynamical mechanism
    40 evolution
    41 filling
    42 first detailed analysis
    43 fundamental role
    44 initial sample
    45 injection
    46 injection mechanism
    47 injection rate
    48 large semi-major axes
    49 loss cone
    50 mechanism
    51 model
    52 normal conditions
    53 observable orbits
    54 observable part
    55 orbit
    56 outer part
    57 part
    58 period
    59 perturbations
    60 present-day solar system
    61 quiescent period
    62 rate
    63 region
    64 role
    65 samples
    66 semi-major axes
    67 separate models
    68 separate rates
    69 showers
    70 simulations
    71 solar system
    72 stars
    73 stellar perturbations
    74 sum
    75 synergy
    76 system
    77 tide
    78 total injection rate
    79 schema:name Injection of Oort Cloud comets: the fundamental role of stellar perturbations
    80 schema:pagination 111-132
    81 schema:productId N69ebbff43e4047578a83c0d0d186035a
    82 Naa7f7c5eacf24d2585741054c57e258f
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006818588
    84 https://doi.org/10.1007/s10569-008-9140-y
    85 schema:sdDatePublished 2022-05-10T10:00
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N205d0116be4f4e819785f423aa396e1b
    88 schema:url https://doi.org/10.1007/s10569-008-9140-y
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N205d0116be4f4e819785f423aa396e1b schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N3791157d84d34f9d82f191184cde78c2 rdf:first sg:person.014712060747.04
    95 rdf:rest rdf:nil
    96 N66e486d283ab4618bd3b700a782d875e rdf:first sg:person.013202724547.45
    97 rdf:rest N3791157d84d34f9d82f191184cde78c2
    98 N69ebbff43e4047578a83c0d0d186035a schema:name dimensions_id
    99 schema:value pub.1006818588
    100 rdf:type schema:PropertyValue
    101 N6eb38f4ed2b64bcead64c0c6e872508c rdf:first sg:person.07601750547.97
    102 rdf:rest Nf9ca0057623c4f2494d3e3a94aa77313
    103 N6f80a28dd6364e06889d51841a9dc22d schema:issueNumber 1-3
    104 rdf:type schema:PublicationIssue
    105 Naa7f7c5eacf24d2585741054c57e258f schema:name doi
    106 schema:value 10.1007/s10569-008-9140-y
    107 rdf:type schema:PropertyValue
    108 Ncdda8ad1bfc442b8b77ae3861338bee4 schema:volumeNumber 102
    109 rdf:type schema:PublicationVolume
    110 Nf9ca0057623c4f2494d3e3a94aa77313 rdf:first sg:person.015127714775.16
    111 rdf:rest N66e486d283ab4618bd3b700a782d875e
    112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Mathematical Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Applied Mathematics
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1136436 schema:issn 0923-2958
    119 1572-9478
    120 schema:name Celestial Mechanics and Dynamical Astronomy
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.013202724547.45 schema:affiliation grid-institutes:grid.440460.2
    124 schema:familyName Froeschlé
    125 schema:givenName Christiane
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45
    127 rdf:type schema:Person
    128 sg:person.014712060747.04 schema:affiliation grid-institutes:grid.4293.c
    129 schema:familyName Valsecchi
    130 schema:givenName Giovanni B.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014712060747.04
    132 rdf:type schema:Person
    133 sg:person.015127714775.16 schema:affiliation grid-institutes:None
    134 schema:familyName Fouchard
    135 schema:givenName Marc
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16
    137 rdf:type schema:Person
    138 sg:person.07601750547.97 schema:affiliation grid-institutes:None
    139 schema:familyName Rickman
    140 schema:givenName Hans
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601750547.97
    142 rdf:type schema:Person
    143 sg:pub.10.1007/978-3-540-72984-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002849431
    144 https://doi.org/10.1007/978-3-540-72984-6_10
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-642-82971-0_156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030593848
    147 https://doi.org/10.1007/978-3-642-82971-0_156
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-94-009-5400-7_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053543195
    150 https://doi.org/10.1007/978-94-009-5400-7_17
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-94-010-9256-2_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089816551
    153 https://doi.org/10.1007/978-94-010-9256-2_47
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bf00055164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014462962
    156 https://doi.org/10.1007/bf00055164
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10569-006-9027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009416228
    159 https://doi.org/10.1007/s10569-006-9027-8
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11038-006-9113-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038371305
    162 https://doi.org/10.1007/s11038-006-9113-7
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1023/a:1012098603882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031332680
    165 https://doi.org/10.1023/a:1012098603882
    166 rdf:type schema:CreativeWork
    167 grid-institutes:None schema:alternateName LAL-IMCCE/USTL, 1 Impasse de l’observatoire, 59000, Lille, France
    168 Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden
    169 schema:name LAL-IMCCE/USTL, 1 Impasse de l’observatoire, 59000, Lille, France
    170 PAN Space Research Center, Bartycka 18A, 00-716, Warszawa, Poland
    171 Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden
    172 rdf:type schema:Organization
    173 grid-institutes:grid.4293.c schema:alternateName INAF-IASF, via Fosso del Cavaliere 100, 00133, Roma, Italy
    174 schema:name INAF-IASF, via Fosso del Cavaliere 100, 00133, Roma, Italy
    175 rdf:type schema:Organization
    176 grid-institutes:grid.440460.2 schema:alternateName Observatoire de la Côte d’Azur, UMR 6202, Bv. de l’Observatoire, B.P. 4229, 06304, Nice cedex 4, France
    177 schema:name Observatoire de la Côte d’Azur, UMR 6202, Bv. de l’Observatoire, B.P. 4229, 06304, Nice cedex 4, France
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...