Note on Mercury’s rotation: the four equilibria of the Hamiltonian model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-11

AUTHORS

Sandrine D’Hoedt, Anne Lemaitre, Nicolas Rambaux

ABSTRACT

Mercury is observed in a stable Cassini’s state, close to a 3:2 spin-orbit resonance, and a 1:1 node resonance. This present situation is not the only possible mathematical stable state, as it is shown here through a simple model limited to the second-order in harmonics and where Mercury is considered as a rigid body. In this framework, using a Hamiltonian formalism, four different sets of resonant angles are computed from the differential Hamiltonian equations, and each of them corresponds to four values of the obliquity; thanks to the calculation of the corresponding eigenvalues, their linear stability is analyzed. In this simplified model, two equilibria (one of which corresponding to the present state of Mercury) are stable, one is unstable, and the fourth one is degenerate. This degenerate status disappears with the introduction of the orbit (node and pericenter) precessions. The influence of these precession rates on the proper frequencies of the rotation is also analyzed and quantified, for different planetary models. More... »

PAGES

253-258

References to SciGraph publications

  • 2006-05. The 3:2 spin-orbit resonant motion of Mercury in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2004-04. The Spin-Orbit Resonant Rotation of Mercury: A Two Degree of Freedom Hamiltonian Model in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10569-006-9041-x

    DOI

    http://dx.doi.org/10.1007/s10569-006-9041-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018348031


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "D\u00e9partement de math\u00e9matique, FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgique"
              ], 
              "type": "Organization"
            }, 
            "familyName": "D\u2019Hoedt", 
            "givenName": "Sandrine", 
            "id": "sg:person.013753635410.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753635410.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "D\u00e9partement de math\u00e9matique, FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgique"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lemaitre", 
            "givenName": "Anne", 
            "id": "sg:person.014221220641.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221220641.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "D\u00e9partement de math\u00e9matique, FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgique"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rambaux", 
            "givenName": "Nicolas", 
            "id": "sg:person.014525312356.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525312356.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10569-006-9032-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029877442", 
              "https://doi.org/10.1007/s10569-006-9032-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-006-9032-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029877442", 
              "https://doi.org/10.1007/s10569-006-9032-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:cele.0000038607.32187.d4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038279588", 
              "https://doi.org/10.1023/b:cele.0000038607.32187.d4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1743921305001444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047045940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(87)90033-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052093807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(87)90033-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052093807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361:20031446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056931537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/111604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058450183"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-11", 
        "datePublishedReg": "2006-11-01", 
        "description": "Mercury is observed in a stable Cassini\u2019s state, close to a 3:2 spin-orbit resonance, and a 1:1 node resonance. This present situation is not the only possible mathematical stable state, as it is shown here through a simple model limited to the second-order in harmonics and where Mercury is considered as a rigid body. In this framework, using a Hamiltonian formalism, four different sets of resonant angles are computed from the differential Hamiltonian equations, and each of them corresponds to four values of the obliquity; thanks to the calculation of the corresponding eigenvalues, their linear stability is analyzed. In this simplified model, two equilibria (one of which corresponding to the present state of Mercury) are stable, one is unstable, and the fourth one is degenerate. This degenerate status disappears with the introduction of the orbit (node and pericenter) precessions. The influence of these precession rates on the proper frequencies of the rotation is also analyzed and quantified, for different planetary models.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10569-006-9041-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "96"
          }
        ], 
        "name": "Note on Mercury\u2019s rotation: the four equilibria of the Hamiltonian model", 
        "pagination": "253-258", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "576ba8068f4828933a72583dc0a7a92f321235ed93af94542ba2e3a76d216d90"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10569-006-9041-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018348031"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10569-006-9041-x", 
          "https://app.dimensions.ai/details/publication/pub.1018348031"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13073_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10569-006-9041-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9041-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9041-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9041-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9041-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10569-006-9041-x schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N0e85a927e4254c46b52425ab3a1b6795
    4 schema:citation sg:pub.10.1007/s10569-006-9032-y
    5 sg:pub.10.1023/b:cele.0000038607.32187.d4
    6 https://doi.org/10.1016/0019-1035(87)90033-9
    7 https://doi.org/10.1017/s1743921305001444
    8 https://doi.org/10.1051/0004-6361:20031446
    9 https://doi.org/10.1086/111604
    10 schema:datePublished 2006-11
    11 schema:datePublishedReg 2006-11-01
    12 schema:description Mercury is observed in a stable Cassini’s state, close to a 3:2 spin-orbit resonance, and a 1:1 node resonance. This present situation is not the only possible mathematical stable state, as it is shown here through a simple model limited to the second-order in harmonics and where Mercury is considered as a rigid body. In this framework, using a Hamiltonian formalism, four different sets of resonant angles are computed from the differential Hamiltonian equations, and each of them corresponds to four values of the obliquity; thanks to the calculation of the corresponding eigenvalues, their linear stability is analyzed. In this simplified model, two equilibria (one of which corresponding to the present state of Mercury) are stable, one is unstable, and the fourth one is degenerate. This degenerate status disappears with the introduction of the orbit (node and pericenter) precessions. The influence of these precession rates on the proper frequencies of the rotation is also analyzed and quantified, for different planetary models.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Ne9168e531a784a7caaac7ad46df5f425
    17 Neec165dbc5544ff6b5fac9ff2dd65fba
    18 sg:journal.1136436
    19 schema:name Note on Mercury’s rotation: the four equilibria of the Hamiltonian model
    20 schema:pagination 253-258
    21 schema:productId N16e97dd3413e43758ca07b64d0717c0c
    22 N86d5a0e4515d4b27ab50641088816db5
    23 Nd5650e3d09d34ef5a6ee9e33aa49ff6e
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018348031
    25 https://doi.org/10.1007/s10569-006-9041-x
    26 schema:sdDatePublished 2019-04-11T14:27
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Nbfc8a0d10d8b47e0b0f15971b0e11513
    29 schema:url http://link.springer.com/10.1007%2Fs10569-006-9041-x
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N0e85a927e4254c46b52425ab3a1b6795 rdf:first sg:person.013753635410.96
    34 rdf:rest N48a3ae1ca2194b0cae7254595d84bb70
    35 N16e97dd3413e43758ca07b64d0717c0c schema:name doi
    36 schema:value 10.1007/s10569-006-9041-x
    37 rdf:type schema:PropertyValue
    38 N48a3ae1ca2194b0cae7254595d84bb70 rdf:first sg:person.014221220641.31
    39 rdf:rest Nba5759b7e12d4176a3537c93a2c8c95d
    40 N86d5a0e4515d4b27ab50641088816db5 schema:name readcube_id
    41 schema:value 576ba8068f4828933a72583dc0a7a92f321235ed93af94542ba2e3a76d216d90
    42 rdf:type schema:PropertyValue
    43 Nba5759b7e12d4176a3537c93a2c8c95d rdf:first sg:person.014525312356.74
    44 rdf:rest rdf:nil
    45 Nbfc8a0d10d8b47e0b0f15971b0e11513 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 Nd5650e3d09d34ef5a6ee9e33aa49ff6e schema:name dimensions_id
    48 schema:value pub.1018348031
    49 rdf:type schema:PropertyValue
    50 Ne9168e531a784a7caaac7ad46df5f425 schema:volumeNumber 96
    51 rdf:type schema:PublicationVolume
    52 Neec165dbc5544ff6b5fac9ff2dd65fba schema:issueNumber 3-4
    53 rdf:type schema:PublicationIssue
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Applied Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136436 schema:issn 0008-8714
    61 0923-2958
    62 schema:name Celestial Mechanics and Dynamical Astronomy
    63 rdf:type schema:Periodical
    64 sg:person.013753635410.96 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    65 schema:familyName D’Hoedt
    66 schema:givenName Sandrine
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753635410.96
    68 rdf:type schema:Person
    69 sg:person.014221220641.31 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    70 schema:familyName Lemaitre
    71 schema:givenName Anne
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221220641.31
    73 rdf:type schema:Person
    74 sg:person.014525312356.74 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    75 schema:familyName Rambaux
    76 schema:givenName Nicolas
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525312356.74
    78 rdf:type schema:Person
    79 sg:pub.10.1007/s10569-006-9032-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029877442
    80 https://doi.org/10.1007/s10569-006-9032-y
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1023/b:cele.0000038607.32187.d4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038279588
    83 https://doi.org/10.1023/b:cele.0000038607.32187.d4
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0019-1035(87)90033-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052093807
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1017/s1743921305001444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047045940
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1051/0004-6361:20031446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056931537
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1086/111604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058450183
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
    94 schema:name Département de mathématique, FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgique
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...