Ontology type: schema:ScholarlyArticle
2006-11-15
AUTHORS ABSTRACTImproved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincaré’s method of modeling the dynamical effects of the fluid core, and Sasao’s approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth’s rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core (including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags δ, δc, δi responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984–2005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals dθ, sin θd \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} for the angles of nutation θ and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} are 0.136 mas and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for IAU 2000 theory. The WRMS error of the UT residuals is 18 ms. More... »
PAGES169-217
http://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5
DOIhttp://dx.doi.org/10.1007/s10569-006-9038-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032058649
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.465424.5",
"name": [
"Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Krasinsky",
"givenName": "G. A.",
"id": "sg:person.011040560377.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1019955827459",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050776887",
"https://doi.org/10.1023/a:1019955827459"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02524332",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049663456",
"https://doi.org/10.1007/bf02524332"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008350710849",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041139170",
"https://doi.org/10.1023/a:1008350710849"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10569-006-9033-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044908689",
"https://doi.org/10.1007/s10569-006-9033-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008381000993",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020962961",
"https://doi.org/10.1023/a:1008381000993"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-010-9568-6_27",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010798054",
"https://doi.org/10.1007/978-94-010-9568-6_27"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02426669",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047694489",
"https://doi.org/10.1007/bf02426669"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02426668",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040720258",
"https://doi.org/10.1007/bf02426668"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-11-15",
"datePublishedReg": "2006-11-15",
"description": "Improved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincar\u00e9\u2019s method of modeling the dynamical effects of the fluid core, and Sasao\u2019s approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth\u2019s rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core (including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags \u03b4, \u03b4c, \u03b4i responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984\u20132005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals d\u03b8, sin \u03b8d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi$$\\end{document} for the angles of nutation \u03b8 and precession \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi$$\\end{document} are 0.136\u00a0mas and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165\u00a0mas for IAU 2000 theory. The WRMS error of the UT residuals is 18\u00a0ms.",
"genre": "article",
"id": "sg:pub.10.1007/s10569-006-9038-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "96"
}
],
"keywords": [
"differential equations",
"fluid core",
"numerical theory",
"deformable Earth",
"simple close form",
"Poincar\u00e9 method",
"mathematical model",
"numerical integration",
"dynamical effects",
"time span 1984",
"IAU 2000",
"dissipation of energy",
"equations",
"mean square error",
"tide effects",
"tidal variations",
"moment of inertia",
"tidal phase",
"close form",
"pole position",
"Earth's rotation",
"tidal deformation",
"tidal effects",
"tidal interactions",
"Love numbers",
"root mean square error",
"Ma",
"Earth",
"inner core",
"theory",
"mantle",
"square error",
"important perturbations",
"separate paper",
"core",
"perturbations",
"paper 2",
"error",
"second part",
"external core",
"rotation",
"precession",
"\u03b8D",
"variation",
"motion",
"dissipation",
"residuals",
"d\u03b8",
"moment",
"inertia",
"approach",
"perturbing",
"\u0394C",
"deformation",
"boundaries",
"UT",
"model",
"redistribution",
"terms",
"energy",
"angle",
"part",
"integration",
"detail",
"density",
"number",
"kind",
"interaction",
"phase",
"form",
"consideration",
"cases",
"work",
"whole",
"position",
"effect",
"axial rotation",
"such integration",
"MS",
"method",
"paper"
],
"name": "Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model",
"pagination": "169-217",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032058649"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10569-006-9038-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10569-006-9038-5",
"https://app.dimensions.ai/details/publication/pub.1032058649"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_429.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10569-006-9038-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
22 PREDICATES
114 URIs
98 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10569-006-9038-5 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N2840747338424773baf4d538737a2bca |
4 | ″ | schema:citation | sg:pub.10.1007/978-94-010-9568-6_27 |
5 | ″ | ″ | sg:pub.10.1007/bf02426668 |
6 | ″ | ″ | sg:pub.10.1007/bf02426669 |
7 | ″ | ″ | sg:pub.10.1007/bf02524332 |
8 | ″ | ″ | sg:pub.10.1007/s10569-006-9033-x |
9 | ″ | ″ | sg:pub.10.1023/a:1008350710849 |
10 | ″ | ″ | sg:pub.10.1023/a:1008381000993 |
11 | ″ | ″ | sg:pub.10.1023/a:1019955827459 |
12 | ″ | schema:datePublished | 2006-11-15 |
13 | ″ | schema:datePublishedReg | 2006-11-15 |
14 | ″ | schema:description | Improved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincaré’s method of modeling the dynamical effects of the fluid core, and Sasao’s approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth’s rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core (including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags δ, δc, δi responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984–2005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals dθ, sin θd \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} for the angles of nutation θ and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} are 0.136 mas and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for IAU 2000 theory. The WRMS error of the UT residuals is 18 ms. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | false |
18 | ″ | schema:isPartOf | N709be1f03d814ce7bdd4d36be74356a4 |
19 | ″ | ″ | N7f4f2777e82e494998e2e4b09e7c33ca |
20 | ″ | ″ | sg:journal.1136436 |
21 | ″ | schema:keywords | Earth |
22 | ″ | ″ | Earth's rotation |
23 | ″ | ″ | IAU 2000 |
24 | ″ | ″ | Love numbers |
25 | ″ | ″ | MS |
26 | ″ | ″ | Ma |
27 | ″ | ″ | Poincaré method |
28 | ″ | ″ | UT |
29 | ″ | ″ | angle |
30 | ″ | ″ | approach |
31 | ″ | ″ | axial rotation |
32 | ″ | ″ | boundaries |
33 | ″ | ″ | cases |
34 | ″ | ″ | close form |
35 | ″ | ″ | consideration |
36 | ″ | ″ | core |
37 | ″ | ″ | deformable Earth |
38 | ″ | ″ | deformation |
39 | ″ | ″ | density |
40 | ″ | ″ | detail |
41 | ″ | ″ | differential equations |
42 | ″ | ″ | dissipation |
43 | ″ | ″ | dissipation of energy |
44 | ″ | ″ | dynamical effects |
45 | ″ | ″ | dθ |
46 | ″ | ″ | effect |
47 | ″ | ″ | energy |
48 | ″ | ″ | equations |
49 | ″ | ″ | error |
50 | ″ | ″ | external core |
51 | ″ | ″ | fluid core |
52 | ″ | ″ | form |
53 | ″ | ″ | important perturbations |
54 | ″ | ″ | inertia |
55 | ″ | ″ | inner core |
56 | ″ | ″ | integration |
57 | ″ | ″ | interaction |
58 | ″ | ″ | kind |
59 | ″ | ″ | mantle |
60 | ″ | ″ | mathematical model |
61 | ″ | ″ | mean square error |
62 | ″ | ″ | method |
63 | ″ | ″ | model |
64 | ″ | ″ | moment |
65 | ″ | ″ | moment of inertia |
66 | ″ | ″ | motion |
67 | ″ | ″ | number |
68 | ″ | ″ | numerical integration |
69 | ″ | ″ | numerical theory |
70 | ″ | ″ | paper |
71 | ″ | ″ | paper 2 |
72 | ″ | ″ | part |
73 | ″ | ″ | perturbations |
74 | ″ | ″ | perturbing |
75 | ″ | ″ | phase |
76 | ″ | ″ | pole position |
77 | ″ | ″ | position |
78 | ″ | ″ | precession |
79 | ″ | ″ | redistribution |
80 | ″ | ″ | residuals |
81 | ″ | ″ | root mean square error |
82 | ″ | ″ | rotation |
83 | ″ | ″ | second part |
84 | ″ | ″ | separate paper |
85 | ″ | ″ | simple close form |
86 | ″ | ″ | square error |
87 | ″ | ″ | such integration |
88 | ″ | ″ | terms |
89 | ″ | ″ | theory |
90 | ″ | ″ | tidal deformation |
91 | ″ | ″ | tidal effects |
92 | ″ | ″ | tidal interactions |
93 | ″ | ″ | tidal phase |
94 | ″ | ″ | tidal variations |
95 | ″ | ″ | tide effects |
96 | ″ | ″ | time span 1984 |
97 | ″ | ″ | variation |
98 | ″ | ″ | whole |
99 | ″ | ″ | work |
100 | ″ | ″ | ΔC |
101 | ″ | ″ | θD |
102 | ″ | schema:name | Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model |
103 | ″ | schema:pagination | 169-217 |
104 | ″ | schema:productId | N7d5f202718eb4857b081fb31b480053d |
105 | ″ | ″ | Nebfdd44f45e14c159a3d8a1482c994ce |
106 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032058649 |
107 | ″ | ″ | https://doi.org/10.1007/s10569-006-9038-5 |
108 | ″ | schema:sdDatePublished | 2022-05-10T09:55 |
109 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
110 | ″ | schema:sdPublisher | N51194364773046f9bd431fe47f792ef9 |
111 | ″ | schema:url | https://doi.org/10.1007/s10569-006-9038-5 |
112 | ″ | sgo:license | sg:explorer/license/ |
113 | ″ | sgo:sdDataset | articles |
114 | ″ | rdf:type | schema:ScholarlyArticle |
115 | N2840747338424773baf4d538737a2bca | rdf:first | sg:person.011040560377.45 |
116 | ″ | rdf:rest | rdf:nil |
117 | N51194364773046f9bd431fe47f792ef9 | schema:name | Springer Nature - SN SciGraph project |
118 | ″ | rdf:type | schema:Organization |
119 | N709be1f03d814ce7bdd4d36be74356a4 | schema:volumeNumber | 96 |
120 | ″ | rdf:type | schema:PublicationVolume |
121 | N7d5f202718eb4857b081fb31b480053d | schema:name | dimensions_id |
122 | ″ | schema:value | pub.1032058649 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | N7f4f2777e82e494998e2e4b09e7c33ca | schema:issueNumber | 3-4 |
125 | ″ | rdf:type | schema:PublicationIssue |
126 | Nebfdd44f45e14c159a3d8a1482c994ce | schema:name | doi |
127 | ″ | schema:value | 10.1007/s10569-006-9038-5 |
128 | ″ | rdf:type | schema:PropertyValue |
129 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
130 | ″ | schema:name | Mathematical Sciences |
131 | ″ | rdf:type | schema:DefinedTerm |
132 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
133 | ″ | schema:name | Applied Mathematics |
134 | ″ | rdf:type | schema:DefinedTerm |
135 | sg:journal.1136436 | schema:issn | 0923-2958 |
136 | ″ | ″ | 1572-9478 |
137 | ″ | schema:name | Celestial Mechanics and Dynamical Astronomy |
138 | ″ | schema:publisher | Springer Nature |
139 | ″ | rdf:type | schema:Periodical |
140 | sg:person.011040560377.45 | schema:affiliation | grid-institutes:grid.465424.5 |
141 | ″ | schema:familyName | Krasinsky |
142 | ″ | schema:givenName | G. A. |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45 |
144 | ″ | rdf:type | schema:Person |
145 | sg:pub.10.1007/978-94-010-9568-6_27 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010798054 |
146 | ″ | ″ | https://doi.org/10.1007/978-94-010-9568-6_27 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1007/bf02426668 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040720258 |
149 | ″ | ″ | https://doi.org/10.1007/bf02426668 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1007/bf02426669 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047694489 |
152 | ″ | ″ | https://doi.org/10.1007/bf02426669 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1007/bf02524332 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049663456 |
155 | ″ | ″ | https://doi.org/10.1007/bf02524332 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | sg:pub.10.1007/s10569-006-9033-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044908689 |
158 | ″ | ″ | https://doi.org/10.1007/s10569-006-9033-x |
159 | ″ | rdf:type | schema:CreativeWork |
160 | sg:pub.10.1023/a:1008350710849 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041139170 |
161 | ″ | ″ | https://doi.org/10.1023/a:1008350710849 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1023/a:1008381000993 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020962961 |
164 | ″ | ″ | https://doi.org/10.1023/a:1008381000993 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | sg:pub.10.1023/a:1019955827459 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050776887 |
167 | ″ | ″ | https://doi.org/10.1023/a:1019955827459 |
168 | ″ | rdf:type | schema:CreativeWork |
169 | grid-institutes:grid.465424.5 | schema:alternateName | Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia |
170 | ″ | schema:name | Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia |
171 | ″ | rdf:type | schema:Organization |