Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-11-15

AUTHORS

G. A. Krasinsky

ABSTRACT

Improved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincaré’s method of modeling the dynamical effects of the fluid core, and Sasao’s approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth’s rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core (including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags δ, δc, δi responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984–2005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals dθ, sin θd \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} for the angles of nutation θ and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} are 0.136 mas and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for IAU 2000 theory. The WRMS error of the UT residuals is 18 ms. More... »

PAGES

169-217

References to SciGraph publications

  • 1999-09. Tidal effects in the earth–moon system and the earth's rotation in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1991-03. A Hamiltonian theory for an elastic earth: Elastic energy of deformation in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1991-03. A Hamiltonian theory for an elastic earth: First order analytical integration in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2006-11-15. Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 2: Fitting to VLBI data in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1990-09. The theory of the nutation for the rigid earth model at the second order in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2002-09. Dynamical History of the Earth–Moon System in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1998-04. RDAN97: An Analytical Development of Rigid Earth Nutation Series Using the Torque Approach in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1980. A Simple Theory on the Dynamical Effects of a Stratified Fluid Core upon Nutational Motion of the Earth in NUTATION AND THE EARTH’S ROTATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5

    DOI

    http://dx.doi.org/10.1007/s10569-006-9038-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032058649


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465424.5", 
              "name": [
                "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krasinsky", 
            "givenName": "G. A.", 
            "id": "sg:person.011040560377.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1019955827459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050776887", 
              "https://doi.org/10.1023/a:1019955827459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02524332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049663456", 
              "https://doi.org/10.1007/bf02524332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008350710849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041139170", 
              "https://doi.org/10.1023/a:1008350710849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-006-9033-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044908689", 
              "https://doi.org/10.1007/s10569-006-9033-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008381000993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020962961", 
              "https://doi.org/10.1023/a:1008381000993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-9568-6_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010798054", 
              "https://doi.org/10.1007/978-94-010-9568-6_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02426669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047694489", 
              "https://doi.org/10.1007/bf02426669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02426668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040720258", 
              "https://doi.org/10.1007/bf02426668"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-11-15", 
        "datePublishedReg": "2006-11-15", 
        "description": "Improved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincar\u00e9\u2019s method of modeling the dynamical effects of the fluid core, and Sasao\u2019s approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth\u2019s rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core (including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags \u03b4, \u03b4c, \u03b4i responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984\u20132005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals d\u03b8, sin \u03b8d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi$$\\end{document} for the angles of nutation \u03b8 and precession \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi$$\\end{document} are 0.136\u00a0mas and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165\u00a0mas for IAU 2000 theory. The WRMS error of the UT residuals is 18\u00a0ms.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10569-006-9038-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0923-2958", 
              "1572-9478"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "96"
          }
        ], 
        "keywords": [
          "differential equations", 
          "fluid core", 
          "numerical theory", 
          "deformable Earth", 
          "simple close form", 
          "Poincar\u00e9 method", 
          "mathematical model", 
          "numerical integration", 
          "dynamical effects", 
          "time span 1984", 
          "IAU 2000", 
          "dissipation of energy", 
          "equations", 
          "mean square error", 
          "tide effects", 
          "tidal variations", 
          "moment of inertia", 
          "tidal phase", 
          "close form", 
          "pole position", 
          "Earth's rotation", 
          "tidal deformation", 
          "tidal effects", 
          "tidal interactions", 
          "Love numbers", 
          "root mean square error", 
          "Ma", 
          "Earth", 
          "inner core", 
          "theory", 
          "mantle", 
          "square error", 
          "important perturbations", 
          "separate paper", 
          "core", 
          "perturbations", 
          "paper 2", 
          "error", 
          "second part", 
          "external core", 
          "rotation", 
          "precession", 
          "\u03b8D", 
          "variation", 
          "motion", 
          "dissipation", 
          "residuals", 
          "d\u03b8", 
          "moment", 
          "inertia", 
          "approach", 
          "perturbing", 
          "\u0394C", 
          "deformation", 
          "boundaries", 
          "UT", 
          "model", 
          "redistribution", 
          "terms", 
          "energy", 
          "angle", 
          "part", 
          "integration", 
          "detail", 
          "density", 
          "number", 
          "kind", 
          "interaction", 
          "phase", 
          "form", 
          "consideration", 
          "cases", 
          "work", 
          "whole", 
          "position", 
          "effect", 
          "axial rotation", 
          "such integration", 
          "MS", 
          "method", 
          "paper"
        ], 
        "name": "Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model", 
        "pagination": "169-217", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032058649"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10569-006-9038-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10569-006-9038-5", 
          "https://app.dimensions.ai/details/publication/pub.1032058649"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_429.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10569-006-9038-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9038-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      22 PREDICATES      114 URIs      98 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10569-006-9038-5 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N2840747338424773baf4d538737a2bca
    4 schema:citation sg:pub.10.1007/978-94-010-9568-6_27
    5 sg:pub.10.1007/bf02426668
    6 sg:pub.10.1007/bf02426669
    7 sg:pub.10.1007/bf02524332
    8 sg:pub.10.1007/s10569-006-9033-x
    9 sg:pub.10.1023/a:1008350710849
    10 sg:pub.10.1023/a:1008381000993
    11 sg:pub.10.1023/a:1019955827459
    12 schema:datePublished 2006-11-15
    13 schema:datePublishedReg 2006-11-15
    14 schema:description Improved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincaré’s method of modeling the dynamical effects of the fluid core, and Sasao’s approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth’s rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core (including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags δ, δc, δi responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984–2005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals dθ, sin θd \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} for the angles of nutation θ and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} are 0.136 mas and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for IAU 2000 theory. The WRMS error of the UT residuals is 18 ms.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N709be1f03d814ce7bdd4d36be74356a4
    19 N7f4f2777e82e494998e2e4b09e7c33ca
    20 sg:journal.1136436
    21 schema:keywords Earth
    22 Earth's rotation
    23 IAU 2000
    24 Love numbers
    25 MS
    26 Ma
    27 Poincaré method
    28 UT
    29 angle
    30 approach
    31 axial rotation
    32 boundaries
    33 cases
    34 close form
    35 consideration
    36 core
    37 deformable Earth
    38 deformation
    39 density
    40 detail
    41 differential equations
    42 dissipation
    43 dissipation of energy
    44 dynamical effects
    45
    46 effect
    47 energy
    48 equations
    49 error
    50 external core
    51 fluid core
    52 form
    53 important perturbations
    54 inertia
    55 inner core
    56 integration
    57 interaction
    58 kind
    59 mantle
    60 mathematical model
    61 mean square error
    62 method
    63 model
    64 moment
    65 moment of inertia
    66 motion
    67 number
    68 numerical integration
    69 numerical theory
    70 paper
    71 paper 2
    72 part
    73 perturbations
    74 perturbing
    75 phase
    76 pole position
    77 position
    78 precession
    79 redistribution
    80 residuals
    81 root mean square error
    82 rotation
    83 second part
    84 separate paper
    85 simple close form
    86 square error
    87 such integration
    88 terms
    89 theory
    90 tidal deformation
    91 tidal effects
    92 tidal interactions
    93 tidal phase
    94 tidal variations
    95 tide effects
    96 time span 1984
    97 variation
    98 whole
    99 work
    100 ΔC
    101 θD
    102 schema:name Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model
    103 schema:pagination 169-217
    104 schema:productId N7d5f202718eb4857b081fb31b480053d
    105 Nebfdd44f45e14c159a3d8a1482c994ce
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032058649
    107 https://doi.org/10.1007/s10569-006-9038-5
    108 schema:sdDatePublished 2022-05-10T09:55
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N51194364773046f9bd431fe47f792ef9
    111 schema:url https://doi.org/10.1007/s10569-006-9038-5
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N2840747338424773baf4d538737a2bca rdf:first sg:person.011040560377.45
    116 rdf:rest rdf:nil
    117 N51194364773046f9bd431fe47f792ef9 schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N709be1f03d814ce7bdd4d36be74356a4 schema:volumeNumber 96
    120 rdf:type schema:PublicationVolume
    121 N7d5f202718eb4857b081fb31b480053d schema:name dimensions_id
    122 schema:value pub.1032058649
    123 rdf:type schema:PropertyValue
    124 N7f4f2777e82e494998e2e4b09e7c33ca schema:issueNumber 3-4
    125 rdf:type schema:PublicationIssue
    126 Nebfdd44f45e14c159a3d8a1482c994ce schema:name doi
    127 schema:value 10.1007/s10569-006-9038-5
    128 rdf:type schema:PropertyValue
    129 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Mathematical Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Applied Mathematics
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1136436 schema:issn 0923-2958
    136 1572-9478
    137 schema:name Celestial Mechanics and Dynamical Astronomy
    138 schema:publisher Springer Nature
    139 rdf:type schema:Periodical
    140 sg:person.011040560377.45 schema:affiliation grid-institutes:grid.465424.5
    141 schema:familyName Krasinsky
    142 schema:givenName G. A.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45
    144 rdf:type schema:Person
    145 sg:pub.10.1007/978-94-010-9568-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010798054
    146 https://doi.org/10.1007/978-94-010-9568-6_27
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02426668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040720258
    149 https://doi.org/10.1007/bf02426668
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02426669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047694489
    152 https://doi.org/10.1007/bf02426669
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf02524332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049663456
    155 https://doi.org/10.1007/bf02524332
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10569-006-9033-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044908689
    158 https://doi.org/10.1007/s10569-006-9033-x
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1023/a:1008350710849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041139170
    161 https://doi.org/10.1023/a:1008350710849
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1023/a:1008381000993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020962961
    164 https://doi.org/10.1023/a:1008381000993
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1023/a:1019955827459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050776887
    167 https://doi.org/10.1023/a:1019955827459
    168 rdf:type schema:CreativeWork
    169 grid-institutes:grid.465424.5 schema:alternateName Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia
    170 schema:name Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...