Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 2: Fitting to VLBI data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-11-15

AUTHORS

G. A. Krasinsky, M. V. Vasilyev

ABSTRACT

VLBI-based offsets of the Celestial Pole positions, as well as the variations of UT (series of Goddard Space Flight Center, 1984–2005) are processed applying the Earth’s rotation theory (ERA) 2005 constructed by the numerical integration of the differential equations of rotation of the deformable Earth. The equations were published earlier (Krasinsky 2006) as the first part of the work. The resulting weighted root mean square (WRMS) errors of the residuals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm d}\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm sin}\theta{\rm d}\phi}$$\end{document} for the angles of nutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are 0.136 and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for the IAU 2000 model adopted as the international standard. In ERA 2005, the angles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are related to the inertial ecliptical frame J2000, the angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} including the precessional secular motion. As the published observational data are theory-dependent being related to IAU 2000, a procedure to confront the numerical theory to the observed Celestial Pole offsets and UT variations is developed. Processing the VLBI data has shown that beside the well known 435-day FCN mode of the free core nutation, there exits a second mode, FICN, caused by the inner part of the fluid core, with the period of 420 day close to that of the FCN mode. Beatings between the two modes are responsible for the apparent damping and excitation of the free oscillations, and are implicitly modeled by ERA 2005. The nutational and precessional motions in ERA 2005 are proved to be mutually consistent but only in case the relativistic correction for the geodetic precession is applied. Otherwise, the overall WRMS error of the residuals would increase by 35%. Thus, the effect of the geodetic precession in the Earth rotation is confirmed experimentally. The other finding is the reliable estimation δc = 3.844 ± 0.028° of the phase lag δc of the tides in the fluid core. When processing the UT variations, a simple model of the elastic interaction between the mantle and fluid core at their common boundary made it possible to satisfactory describe the largest observed oscillations of UT with the period of 18.6 year, reducing the WRMS error of the UT residuals to the value 0.18 ms (after removing the secular, annual and semi-annual terms). More... »

PAGES

219-237

References to SciGraph publications

  • 1997. Analysis of LLR Data by the Program System Era in DYNAMICS AND ASTROMETRY OF NATURAL AND ARTIFICIAL CELESTIAL BODIES
  • 2002-09. Dynamical History of the Earth–Moon System in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2006-11-15. Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1997. Era: Knowledge Base for Ephemeris and Dynamical Astronomy in DYNAMICS AND ASTROMETRY OF NATURAL AND ARTIFICIAL CELESTIAL BODIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x

    DOI

    http://dx.doi.org/10.1007/s10569-006-9033-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044908689


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465424.5", 
              "name": [
                "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krasinsky", 
            "givenName": "G. A.", 
            "id": "sg:person.011040560377.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465424.5", 
              "name": [
                "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasilyev", 
            "givenName": "M. V.", 
            "id": "sg:person.015421423377.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421423377.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-011-5534-2_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005872602", 
              "https://doi.org/10.1007/978-94-011-5534-2_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-006-9038-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032058649", 
              "https://doi.org/10.1007/s10569-006-9038-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019955827459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050776887", 
              "https://doi.org/10.1023/a:1019955827459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5534-2_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039462841", 
              "https://doi.org/10.1007/978-94-011-5534-2_31"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-11-15", 
        "datePublishedReg": "2006-11-15", 
        "description": "VLBI-based offsets of the Celestial Pole positions, as well as the variations of UT (series of Goddard Space Flight Center, 1984\u20132005) are processed applying the Earth\u2019s rotation theory (ERA) 2005 constructed by the numerical integration of the differential equations of rotation of the deformable Earth. The equations were published earlier (Krasinsky 2006) as the first part of the work. The resulting weighted root mean square (WRMS) errors of the residuals \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\rm d}\\theta}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\rm sin}\\theta{\\rm d}\\phi}$$\\end{document} for the angles of nutation \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\theta}$$\\end{document} and precession \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\phi}$$\\end{document} are 0.136 and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for the IAU 2000 model adopted as the international standard. In ERA 2005, the angles \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\theta}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\phi}$$\\end{document} are related to the inertial ecliptical frame J2000, the angle \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\phi}$$\\end{document} including the precessional secular motion. As the published observational data are theory-dependent being related to IAU 2000, a procedure to confront the numerical theory to the observed Celestial Pole offsets and UT variations is developed. Processing the VLBI data has shown that beside the well known 435-day FCN mode of the free core nutation, there exits a second mode, FICN, caused by the inner part of the fluid core, with the period of 420\u00a0day close to that of the FCN mode. Beatings between the two modes are responsible for the apparent damping and excitation of the free oscillations, and are implicitly modeled by ERA 2005. The nutational and precessional motions in ERA 2005 are proved to be mutually consistent but only in case the relativistic correction for the geodetic precession is applied. Otherwise, the overall WRMS error of the residuals would increase by 35%. Thus, the effect of the geodetic precession in the Earth rotation is confirmed experimentally. The other finding is the reliable estimation \u03b4c\u00a0= 3.844 \u00b1 0.028\u00b0 of the phase lag \u03b4c of the tides in the fluid core. When processing the UT variations, a simple model of the elastic interaction between the mantle and fluid core at their common boundary made it possible to satisfactory describe the largest observed oscillations of UT with the period of 18.6\u00a0year, reducing the WRMS error of the UT residuals to the value 0.18\u00a0ms (after removing the secular, annual and semi-annual terms).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10569-006-9033-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0923-2958", 
              "1572-9478"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "96"
          }
        ], 
        "keywords": [
          "fluid core", 
          "numerical theory", 
          "deformable Earth", 
          "celestial pole offsets", 
          "differential equations", 
          "geodetic precession", 
          "UT variation", 
          "numerical integration", 
          "precessional motion", 
          "VLBI data", 
          "angle of nutation", 
          "free core nutation", 
          "IAU 2000", 
          "mean square error", 
          "free oscillations", 
          "secular motion", 
          "apparent damping", 
          "core nutation", 
          "observed oscillations", 
          "observational data", 
          "equations", 
          "elastic interaction", 
          "common boundary", 
          "precession", 
          "simple model", 
          "root mean square error", 
          "Earth's rotation", 
          "square error", 
          "nutation", 
          "reliable estimation", 
          "residuals", 
          "motion", 
          "theory", 
          "oscillations", 
          "error", 
          "relativistic corrections", 
          "VLBI", 
          "pole position", 
          "first part", 
          "FICN", 
          "UT", 
          "damping", 
          "rotation", 
          "model", 
          "estimation", 
          "angle", 
          "second mode", 
          "\u0394C", 
          "J2000", 
          "mode", 
          "excitation", 
          "inner part", 
          "offset", 
          "Earth", 
          "core", 
          "boundaries", 
          "correction", 
          "variation", 
          "data", 
          "cases", 
          "work", 
          "procedure", 
          "position", 
          "integration", 
          "part", 
          "interaction", 
          "beating", 
          "tide", 
          "mantle", 
          "effect", 
          "ms", 
          "Ma", 
          "international standards", 
          "period", 
          "standards", 
          "years", 
          "being", 
          "findings", 
          "days"
        ], 
        "name": "Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 2: Fitting to VLBI data", 
        "pagination": "219-237", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044908689"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10569-006-9033-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10569-006-9033-x", 
          "https://app.dimensions.ai/details/publication/pub.1044908689"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10569-006-9033-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      22 PREDICATES      108 URIs      96 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10569-006-9033-x schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N728fca9c9a04417998b32386be523370
    4 schema:citation sg:pub.10.1007/978-94-011-5534-2_29
    5 sg:pub.10.1007/978-94-011-5534-2_31
    6 sg:pub.10.1007/s10569-006-9038-5
    7 sg:pub.10.1023/a:1019955827459
    8 schema:datePublished 2006-11-15
    9 schema:datePublishedReg 2006-11-15
    10 schema:description VLBI-based offsets of the Celestial Pole positions, as well as the variations of UT (series of Goddard Space Flight Center, 1984–2005) are processed applying the Earth’s rotation theory (ERA) 2005 constructed by the numerical integration of the differential equations of rotation of the deformable Earth. The equations were published earlier (Krasinsky 2006) as the first part of the work. The resulting weighted root mean square (WRMS) errors of the residuals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm d}\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm sin}\theta{\rm d}\phi}$$\end{document} for the angles of nutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are 0.136 and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for the IAU 2000 model adopted as the international standard. In ERA 2005, the angles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are related to the inertial ecliptical frame J2000, the angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} including the precessional secular motion. As the published observational data are theory-dependent being related to IAU 2000, a procedure to confront the numerical theory to the observed Celestial Pole offsets and UT variations is developed. Processing the VLBI data has shown that beside the well known 435-day FCN mode of the free core nutation, there exits a second mode, FICN, caused by the inner part of the fluid core, with the period of 420 day close to that of the FCN mode. Beatings between the two modes are responsible for the apparent damping and excitation of the free oscillations, and are implicitly modeled by ERA 2005. The nutational and precessional motions in ERA 2005 are proved to be mutually consistent but only in case the relativistic correction for the geodetic precession is applied. Otherwise, the overall WRMS error of the residuals would increase by 35%. Thus, the effect of the geodetic precession in the Earth rotation is confirmed experimentally. The other finding is the reliable estimation δc = 3.844 ± 0.028° of the phase lag δc of the tides in the fluid core. When processing the UT variations, a simple model of the elastic interaction between the mantle and fluid core at their common boundary made it possible to satisfactory describe the largest observed oscillations of UT with the period of 18.6 year, reducing the WRMS error of the UT residuals to the value 0.18 ms (after removing the secular, annual and semi-annual terms).
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N409c2a98052f458fa8f3109915d69160
    15 N4ae344628c8d456783edcaf73f6b7ad9
    16 sg:journal.1136436
    17 schema:keywords Earth
    18 Earth's rotation
    19 FICN
    20 IAU 2000
    21 J2000
    22 Ma
    23 UT
    24 UT variation
    25 VLBI
    26 VLBI data
    27 angle
    28 angle of nutation
    29 apparent damping
    30 beating
    31 being
    32 boundaries
    33 cases
    34 celestial pole offsets
    35 common boundary
    36 core
    37 core nutation
    38 correction
    39 damping
    40 data
    41 days
    42 deformable Earth
    43 differential equations
    44 effect
    45 elastic interaction
    46 equations
    47 error
    48 estimation
    49 excitation
    50 findings
    51 first part
    52 fluid core
    53 free core nutation
    54 free oscillations
    55 geodetic precession
    56 inner part
    57 integration
    58 interaction
    59 international standards
    60 mantle
    61 mean square error
    62 mode
    63 model
    64 motion
    65 ms
    66 numerical integration
    67 numerical theory
    68 nutation
    69 observational data
    70 observed oscillations
    71 offset
    72 oscillations
    73 part
    74 period
    75 pole position
    76 position
    77 precession
    78 precessional motion
    79 procedure
    80 relativistic corrections
    81 reliable estimation
    82 residuals
    83 root mean square error
    84 rotation
    85 second mode
    86 secular motion
    87 simple model
    88 square error
    89 standards
    90 theory
    91 tide
    92 variation
    93 work
    94 years
    95 ΔC
    96 schema:name Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 2: Fitting to VLBI data
    97 schema:pagination 219-237
    98 schema:productId N3edabd94a8d241e4a5540c348d1b00d6
    99 N6c64355b652a44f88d6c5bca2b8ab167
    100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044908689
    101 https://doi.org/10.1007/s10569-006-9033-x
    102 schema:sdDatePublished 2022-05-20T07:23
    103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    104 schema:sdPublisher Nabbeec9918704abbaa072c73f80b8ebc
    105 schema:url https://doi.org/10.1007/s10569-006-9033-x
    106 sgo:license sg:explorer/license/
    107 sgo:sdDataset articles
    108 rdf:type schema:ScholarlyArticle
    109 N1c3f8ec4fda44ea785d98a5b9b6af53c rdf:first sg:person.015421423377.08
    110 rdf:rest rdf:nil
    111 N3edabd94a8d241e4a5540c348d1b00d6 schema:name dimensions_id
    112 schema:value pub.1044908689
    113 rdf:type schema:PropertyValue
    114 N409c2a98052f458fa8f3109915d69160 schema:volumeNumber 96
    115 rdf:type schema:PublicationVolume
    116 N4ae344628c8d456783edcaf73f6b7ad9 schema:issueNumber 3-4
    117 rdf:type schema:PublicationIssue
    118 N6c64355b652a44f88d6c5bca2b8ab167 schema:name doi
    119 schema:value 10.1007/s10569-006-9033-x
    120 rdf:type schema:PropertyValue
    121 N728fca9c9a04417998b32386be523370 rdf:first sg:person.011040560377.45
    122 rdf:rest N1c3f8ec4fda44ea785d98a5b9b6af53c
    123 Nabbeec9918704abbaa072c73f80b8ebc schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Mathematical Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Applied Mathematics
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1136436 schema:issn 0923-2958
    132 1572-9478
    133 schema:name Celestial Mechanics and Dynamical Astronomy
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.011040560377.45 schema:affiliation grid-institutes:grid.465424.5
    137 schema:familyName Krasinsky
    138 schema:givenName G. A.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45
    140 rdf:type schema:Person
    141 sg:person.015421423377.08 schema:affiliation grid-institutes:grid.465424.5
    142 schema:familyName Vasilyev
    143 schema:givenName M. V.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421423377.08
    145 rdf:type schema:Person
    146 sg:pub.10.1007/978-94-011-5534-2_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005872602
    147 https://doi.org/10.1007/978-94-011-5534-2_29
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-94-011-5534-2_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039462841
    150 https://doi.org/10.1007/978-94-011-5534-2_31
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10569-006-9038-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032058649
    153 https://doi.org/10.1007/s10569-006-9038-5
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1023/a:1019955827459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050776887
    156 https://doi.org/10.1023/a:1019955827459
    157 rdf:type schema:CreativeWork
    158 grid-institutes:grid.465424.5 schema:alternateName Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia
    159 schema:name Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...