Ontology type: schema:ScholarlyArticle
2006-11-15
AUTHORSG. A. Krasinsky, M. V. Vasilyev
ABSTRACTVLBI-based offsets of the Celestial Pole positions, as well as the variations of UT (series of Goddard Space Flight Center, 1984–2005) are processed applying the Earth’s rotation theory (ERA) 2005 constructed by the numerical integration of the differential equations of rotation of the deformable Earth. The equations were published earlier (Krasinsky 2006) as the first part of the work. The resulting weighted root mean square (WRMS) errors of the residuals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm d}\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm sin}\theta{\rm d}\phi}$$\end{document} for the angles of nutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are 0.136 and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for the IAU 2000 model adopted as the international standard. In ERA 2005, the angles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are related to the inertial ecliptical frame J2000, the angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} including the precessional secular motion. As the published observational data are theory-dependent being related to IAU 2000, a procedure to confront the numerical theory to the observed Celestial Pole offsets and UT variations is developed. Processing the VLBI data has shown that beside the well known 435-day FCN mode of the free core nutation, there exits a second mode, FICN, caused by the inner part of the fluid core, with the period of 420 day close to that of the FCN mode. Beatings between the two modes are responsible for the apparent damping and excitation of the free oscillations, and are implicitly modeled by ERA 2005. The nutational and precessional motions in ERA 2005 are proved to be mutually consistent but only in case the relativistic correction for the geodetic precession is applied. Otherwise, the overall WRMS error of the residuals would increase by 35%. Thus, the effect of the geodetic precession in the Earth rotation is confirmed experimentally. The other finding is the reliable estimation δc = 3.844 ± 0.028° of the phase lag δc of the tides in the fluid core. When processing the UT variations, a simple model of the elastic interaction between the mantle and fluid core at their common boundary made it possible to satisfactory describe the largest observed oscillations of UT with the period of 18.6 year, reducing the WRMS error of the UT residuals to the value 0.18 ms (after removing the secular, annual and semi-annual terms). More... »
PAGES219-237
http://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x
DOIhttp://dx.doi.org/10.1007/s10569-006-9033-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1044908689
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.465424.5",
"name": [
"Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Krasinsky",
"givenName": "G. A.",
"id": "sg:person.011040560377.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.465424.5",
"name": [
"Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Vasilyev",
"givenName": "M. V.",
"id": "sg:person.015421423377.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421423377.08"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-94-011-5534-2_29",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005872602",
"https://doi.org/10.1007/978-94-011-5534-2_29"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10569-006-9038-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032058649",
"https://doi.org/10.1007/s10569-006-9038-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1019955827459",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050776887",
"https://doi.org/10.1023/a:1019955827459"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-5534-2_31",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039462841",
"https://doi.org/10.1007/978-94-011-5534-2_31"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-11-15",
"datePublishedReg": "2006-11-15",
"description": "VLBI-based offsets of the Celestial Pole positions, as well as the variations of UT (series of Goddard Space Flight Center, 1984\u20132005) are processed applying the Earth\u2019s rotation theory (ERA) 2005 constructed by the numerical integration of the differential equations of rotation of the deformable Earth. The equations were published earlier (Krasinsky 2006) as the first part of the work. The resulting weighted root mean square (WRMS) errors of the residuals \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\rm d}\\theta}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\rm sin}\\theta{\\rm d}\\phi}$$\\end{document} for the angles of nutation \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\theta}$$\\end{document} and precession \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\phi}$$\\end{document} are 0.136 and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for the IAU 2000 model adopted as the international standard. In ERA 2005, the angles \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\theta}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\phi}$$\\end{document} are related to the inertial ecliptical frame J2000, the angle \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\phi}$$\\end{document} including the precessional secular motion. As the published observational data are theory-dependent being related to IAU 2000, a procedure to confront the numerical theory to the observed Celestial Pole offsets and UT variations is developed. Processing the VLBI data has shown that beside the well known 435-day FCN mode of the free core nutation, there exits a second mode, FICN, caused by the inner part of the fluid core, with the period of 420\u00a0day close to that of the FCN mode. Beatings between the two modes are responsible for the apparent damping and excitation of the free oscillations, and are implicitly modeled by ERA 2005. The nutational and precessional motions in ERA 2005 are proved to be mutually consistent but only in case the relativistic correction for the geodetic precession is applied. Otherwise, the overall WRMS error of the residuals would increase by 35%. Thus, the effect of the geodetic precession in the Earth rotation is confirmed experimentally. The other finding is the reliable estimation \u03b4c\u00a0= 3.844 \u00b1 0.028\u00b0 of the phase lag \u03b4c of the tides in the fluid core. When processing the UT variations, a simple model of the elastic interaction between the mantle and fluid core at their common boundary made it possible to satisfactory describe the largest observed oscillations of UT with the period of 18.6\u00a0year, reducing the WRMS error of the UT residuals to the value 0.18\u00a0ms (after removing the secular, annual and semi-annual terms).",
"genre": "article",
"id": "sg:pub.10.1007/s10569-006-9033-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "96"
}
],
"keywords": [
"fluid core",
"numerical theory",
"deformable Earth",
"celestial pole offsets",
"differential equations",
"geodetic precession",
"UT variation",
"numerical integration",
"precessional motion",
"VLBI data",
"angle of nutation",
"free core nutation",
"IAU 2000",
"mean square error",
"free oscillations",
"secular motion",
"apparent damping",
"core nutation",
"observed oscillations",
"observational data",
"equations",
"elastic interaction",
"common boundary",
"precession",
"simple model",
"root mean square error",
"Earth's rotation",
"square error",
"nutation",
"reliable estimation",
"residuals",
"motion",
"theory",
"oscillations",
"error",
"relativistic corrections",
"VLBI",
"pole position",
"first part",
"FICN",
"UT",
"damping",
"rotation",
"model",
"estimation",
"angle",
"second mode",
"\u0394C",
"J2000",
"mode",
"excitation",
"inner part",
"offset",
"Earth",
"core",
"boundaries",
"correction",
"variation",
"data",
"cases",
"work",
"procedure",
"position",
"integration",
"part",
"interaction",
"beating",
"tide",
"mantle",
"effect",
"ms",
"Ma",
"international standards",
"period",
"standards",
"years",
"being",
"findings",
"days"
],
"name": "Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 2: Fitting to VLBI data",
"pagination": "219-237",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1044908689"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10569-006-9033-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10569-006-9033-x",
"https://app.dimensions.ai/details/publication/pub.1044908689"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_422.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10569-006-9033-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9033-x'
This table displays all metadata directly associated to this object as RDF triples.
160 TRIPLES
22 PREDICATES
108 URIs
96 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10569-006-9033-x | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N728fca9c9a04417998b32386be523370 |
4 | ″ | schema:citation | sg:pub.10.1007/978-94-011-5534-2_29 |
5 | ″ | ″ | sg:pub.10.1007/978-94-011-5534-2_31 |
6 | ″ | ″ | sg:pub.10.1007/s10569-006-9038-5 |
7 | ″ | ″ | sg:pub.10.1023/a:1019955827459 |
8 | ″ | schema:datePublished | 2006-11-15 |
9 | ″ | schema:datePublishedReg | 2006-11-15 |
10 | ″ | schema:description | VLBI-based offsets of the Celestial Pole positions, as well as the variations of UT (series of Goddard Space Flight Center, 1984–2005) are processed applying the Earth’s rotation theory (ERA) 2005 constructed by the numerical integration of the differential equations of rotation of the deformable Earth. The equations were published earlier (Krasinsky 2006) as the first part of the work. The resulting weighted root mean square (WRMS) errors of the residuals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm d}\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm sin}\theta{\rm d}\phi}$$\end{document} for the angles of nutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} and precession \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are 0.136 and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for the IAU 2000 model adopted as the international standard. In ERA 2005, the angles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} are related to the inertial ecliptical frame J2000, the angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} including the precessional secular motion. As the published observational data are theory-dependent being related to IAU 2000, a procedure to confront the numerical theory to the observed Celestial Pole offsets and UT variations is developed. Processing the VLBI data has shown that beside the well known 435-day FCN mode of the free core nutation, there exits a second mode, FICN, caused by the inner part of the fluid core, with the period of 420 day close to that of the FCN mode. Beatings between the two modes are responsible for the apparent damping and excitation of the free oscillations, and are implicitly modeled by ERA 2005. The nutational and precessional motions in ERA 2005 are proved to be mutually consistent but only in case the relativistic correction for the geodetic precession is applied. Otherwise, the overall WRMS error of the residuals would increase by 35%. Thus, the effect of the geodetic precession in the Earth rotation is confirmed experimentally. The other finding is the reliable estimation δc = 3.844 ± 0.028° of the phase lag δc of the tides in the fluid core. When processing the UT variations, a simple model of the elastic interaction between the mantle and fluid core at their common boundary made it possible to satisfactory describe the largest observed oscillations of UT with the period of 18.6 year, reducing the WRMS error of the UT residuals to the value 0.18 ms (after removing the secular, annual and semi-annual terms). |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N409c2a98052f458fa8f3109915d69160 |
15 | ″ | ″ | N4ae344628c8d456783edcaf73f6b7ad9 |
16 | ″ | ″ | sg:journal.1136436 |
17 | ″ | schema:keywords | Earth |
18 | ″ | ″ | Earth's rotation |
19 | ″ | ″ | FICN |
20 | ″ | ″ | IAU 2000 |
21 | ″ | ″ | J2000 |
22 | ″ | ″ | Ma |
23 | ″ | ″ | UT |
24 | ″ | ″ | UT variation |
25 | ″ | ″ | VLBI |
26 | ″ | ″ | VLBI data |
27 | ″ | ″ | angle |
28 | ″ | ″ | angle of nutation |
29 | ″ | ″ | apparent damping |
30 | ″ | ″ | beating |
31 | ″ | ″ | being |
32 | ″ | ″ | boundaries |
33 | ″ | ″ | cases |
34 | ″ | ″ | celestial pole offsets |
35 | ″ | ″ | common boundary |
36 | ″ | ″ | core |
37 | ″ | ″ | core nutation |
38 | ″ | ″ | correction |
39 | ″ | ″ | damping |
40 | ″ | ″ | data |
41 | ″ | ″ | days |
42 | ″ | ″ | deformable Earth |
43 | ″ | ″ | differential equations |
44 | ″ | ″ | effect |
45 | ″ | ″ | elastic interaction |
46 | ″ | ″ | equations |
47 | ″ | ″ | error |
48 | ″ | ″ | estimation |
49 | ″ | ″ | excitation |
50 | ″ | ″ | findings |
51 | ″ | ″ | first part |
52 | ″ | ″ | fluid core |
53 | ″ | ″ | free core nutation |
54 | ″ | ″ | free oscillations |
55 | ″ | ″ | geodetic precession |
56 | ″ | ″ | inner part |
57 | ″ | ″ | integration |
58 | ″ | ″ | interaction |
59 | ″ | ″ | international standards |
60 | ″ | ″ | mantle |
61 | ″ | ″ | mean square error |
62 | ″ | ″ | mode |
63 | ″ | ″ | model |
64 | ″ | ″ | motion |
65 | ″ | ″ | ms |
66 | ″ | ″ | numerical integration |
67 | ″ | ″ | numerical theory |
68 | ″ | ″ | nutation |
69 | ″ | ″ | observational data |
70 | ″ | ″ | observed oscillations |
71 | ″ | ″ | offset |
72 | ″ | ″ | oscillations |
73 | ″ | ″ | part |
74 | ″ | ″ | period |
75 | ″ | ″ | pole position |
76 | ″ | ″ | position |
77 | ″ | ″ | precession |
78 | ″ | ″ | precessional motion |
79 | ″ | ″ | procedure |
80 | ″ | ″ | relativistic corrections |
81 | ″ | ″ | reliable estimation |
82 | ″ | ″ | residuals |
83 | ″ | ″ | root mean square error |
84 | ″ | ″ | rotation |
85 | ″ | ″ | second mode |
86 | ″ | ″ | secular motion |
87 | ″ | ″ | simple model |
88 | ″ | ″ | square error |
89 | ″ | ″ | standards |
90 | ″ | ″ | theory |
91 | ″ | ″ | tide |
92 | ″ | ″ | variation |
93 | ″ | ″ | work |
94 | ″ | ″ | years |
95 | ″ | ″ | ΔC |
96 | ″ | schema:name | Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 2: Fitting to VLBI data |
97 | ″ | schema:pagination | 219-237 |
98 | ″ | schema:productId | N3edabd94a8d241e4a5540c348d1b00d6 |
99 | ″ | ″ | N6c64355b652a44f88d6c5bca2b8ab167 |
100 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044908689 |
101 | ″ | ″ | https://doi.org/10.1007/s10569-006-9033-x |
102 | ″ | schema:sdDatePublished | 2022-05-20T07:23 |
103 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
104 | ″ | schema:sdPublisher | Nabbeec9918704abbaa072c73f80b8ebc |
105 | ″ | schema:url | https://doi.org/10.1007/s10569-006-9033-x |
106 | ″ | sgo:license | sg:explorer/license/ |
107 | ″ | sgo:sdDataset | articles |
108 | ″ | rdf:type | schema:ScholarlyArticle |
109 | N1c3f8ec4fda44ea785d98a5b9b6af53c | rdf:first | sg:person.015421423377.08 |
110 | ″ | rdf:rest | rdf:nil |
111 | N3edabd94a8d241e4a5540c348d1b00d6 | schema:name | dimensions_id |
112 | ″ | schema:value | pub.1044908689 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | N409c2a98052f458fa8f3109915d69160 | schema:volumeNumber | 96 |
115 | ″ | rdf:type | schema:PublicationVolume |
116 | N4ae344628c8d456783edcaf73f6b7ad9 | schema:issueNumber | 3-4 |
117 | ″ | rdf:type | schema:PublicationIssue |
118 | N6c64355b652a44f88d6c5bca2b8ab167 | schema:name | doi |
119 | ″ | schema:value | 10.1007/s10569-006-9033-x |
120 | ″ | rdf:type | schema:PropertyValue |
121 | N728fca9c9a04417998b32386be523370 | rdf:first | sg:person.011040560377.45 |
122 | ″ | rdf:rest | N1c3f8ec4fda44ea785d98a5b9b6af53c |
123 | Nabbeec9918704abbaa072c73f80b8ebc | schema:name | Springer Nature - SN SciGraph project |
124 | ″ | rdf:type | schema:Organization |
125 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Mathematical Sciences |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Applied Mathematics |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | sg:journal.1136436 | schema:issn | 0923-2958 |
132 | ″ | ″ | 1572-9478 |
133 | ″ | schema:name | Celestial Mechanics and Dynamical Astronomy |
134 | ″ | schema:publisher | Springer Nature |
135 | ″ | rdf:type | schema:Periodical |
136 | sg:person.011040560377.45 | schema:affiliation | grid-institutes:grid.465424.5 |
137 | ″ | schema:familyName | Krasinsky |
138 | ″ | schema:givenName | G. A. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.015421423377.08 | schema:affiliation | grid-institutes:grid.465424.5 |
142 | ″ | schema:familyName | Vasilyev |
143 | ″ | schema:givenName | M. V. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421423377.08 |
145 | ″ | rdf:type | schema:Person |
146 | sg:pub.10.1007/978-94-011-5534-2_29 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005872602 |
147 | ″ | ″ | https://doi.org/10.1007/978-94-011-5534-2_29 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1007/978-94-011-5534-2_31 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039462841 |
150 | ″ | ″ | https://doi.org/10.1007/978-94-011-5534-2_31 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | sg:pub.10.1007/s10569-006-9038-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032058649 |
153 | ″ | ″ | https://doi.org/10.1007/s10569-006-9038-5 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | sg:pub.10.1023/a:1019955827459 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050776887 |
156 | ″ | ″ | https://doi.org/10.1023/a:1019955827459 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | grid-institutes:grid.465424.5 | schema:alternateName | Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia |
159 | ″ | schema:name | Institute of Applied Astronomy, Russian Academy of Science, Kutuzov Quay 10, 191187, St. Petersburg, Russia |
160 | ″ | rdf:type | schema:Organization |