Ontology type: schema:ScholarlyArticle
2006-05
AUTHORSMarc Fouchard, Christiane Froeschlé, Giovanni Valsecchi, Hans Rickman
ABSTRACTWe introduce a model for integrating the effects of Galactic tides on Oort cloud comets, which involves two procedures, according to the values of the osculating semi-major axis a and eccentricity e. Ten simulations of the dynamics of 106 comets over 5 Gyr are performed using this model. We thus investigate the long-term effects of the Galactic tide with and without a radial component, the effects of the local density of the Galactic disk, and those of the Oort constants. Most of the results may be understood in terms of the integrability or non-integrability of the system. For an integrable system, which occurs for moderate semi-major axes with or without radial component, the dynamics is explained by periodic variation of the cometary perihelion, inducing the depletion of the outer region of the Oort cloud, a constant flux from the inner region after 500 Myr, and the quick formation of a reservoir of comets with argument of perihelion near 26.6°. When the system is non-integrable, the efficiency of the tide in reducing the cometary perihelion distance is enhanced both by replenishing the Oort cloud domain from which comets are sent toward the planetary system, and by reducing the minimal value that the perihelion distance may reach. No effects of varying the Oort constants were observed, showing that the flat rotation curve is a satisfactory approximation in Oort cloud dynamics. More... »
PAGES299-326
http://scigraph.springernature.com/pub.10.1007/s10569-006-9027-8
DOIhttp://dx.doi.org/10.1007/s10569-006-9027-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1009416228
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "IMCCE/SYRTE, Observatoire de Paris, 77 av. Denfert-Rochereau, 75014, Paris, France",
"id": "http://www.grid.ac/institutes/grid.4307.0",
"name": [
"INAF-IASF, via Fosso del Cavaliere 100, I-00133, Roma, Italy",
"IMCCE/SYRTE, Observatoire de Paris, 77 av. Denfert-Rochereau, 75014, Paris, France"
],
"type": "Organization"
},
"familyName": "Fouchard",
"givenName": "Marc",
"id": "sg:person.015127714775.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Observatoire de la C\u00f4te d\u2019Azur, UMR 6202, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France",
"id": "http://www.grid.ac/institutes/grid.440460.2",
"name": [
"Observatoire de la C\u00f4te d\u2019Azur, UMR 6202, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
],
"type": "Organization"
},
"familyName": "Froeschl\u00e9",
"givenName": "Christiane",
"id": "sg:person.013202724547.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "INAF-IASF, via Fosso del Cavaliere 100, I-00133, Roma, Italy",
"id": "http://www.grid.ac/institutes/grid.4293.c",
"name": [
"INAF-IASF, via Fosso del Cavaliere 100, I-00133, Roma, Italy"
],
"type": "Organization"
},
"familyName": "Valsecchi",
"givenName": "Giovanni",
"id": "sg:person.014712060747.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014712060747.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden"
],
"type": "Organization"
},
"familyName": "Rickman",
"givenName": "Hans",
"id": "sg:person.07601750547.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601750547.97"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10569-005-4820-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006237915",
"https://doi.org/10.1007/s10569-005-4820-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1017540022538",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049691570",
"https://doi.org/10.1023/a:1017540022538"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10569-005-1149-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005110770",
"https://doi.org/10.1007/s10569-005-1149-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00049541",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053051603",
"https://doi.org/10.1007/bf00049541"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-009-5400-7_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053543195",
"https://doi.org/10.1007/978-94-009-5400-7_17"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-05",
"datePublishedReg": "2006-05-01",
"description": "We introduce a model for integrating the effects of Galactic tides on Oort cloud comets, which involves two procedures, according to the values of the osculating semi-major axis a and eccentricity e. Ten simulations of the dynamics of 106 comets over 5\u00a0Gyr are performed using this model. We thus investigate the long-term effects of the Galactic tide with and without a radial component, the effects of the local density of the Galactic disk, and those of the Oort constants. Most of the results may be understood in terms of the integrability or non-integrability of the system. For an integrable system, which occurs for moderate semi-major axes with or without radial component, the dynamics is explained by periodic variation of the cometary perihelion, inducing the depletion of the outer region of the Oort cloud, a constant flux from the inner region after 500\u00a0Myr, and the quick formation of a reservoir of comets with argument of perihelion near 26.6\u00b0. When the system is non-integrable, the efficiency of the tide in reducing the cometary perihelion distance is enhanced both by replenishing the Oort cloud domain from which comets are sent toward the planetary system, and by reducing the minimal value that the perihelion distance may reach. No effects of varying the Oort constants were observed, showing that the flat rotation curve is a satisfactory approximation in Oort cloud dynamics.",
"genre": "article",
"id": "sg:pub.10.1007/s10569-006-9027-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "95"
}
],
"keywords": [
"Galactic tide",
"Oort constants",
"radial component",
"perihelion distance",
"flat rotation curves",
"Oort cloud comets",
"semi-major axes",
"semi-major axis",
"Galactic disk",
"planetary systems",
"rotation curves",
"Oort cloud",
"local density",
"inner region",
"argument of perihelion",
"cometary dynamics",
"eccentricity e.",
"outer region",
"periodic variation",
"comets",
"perihelion",
"cloud dynamics",
"Gyr",
"dynamics",
"constants",
"Myr",
"distance",
"disk",
"cloud",
"flux",
"approximation",
"density",
"constant flux",
"quick formation",
"minimal value",
"satisfactory approximation",
"axis",
"simulations",
"integrable systems",
"region",
"effect",
"tide",
"system",
"axes",
"components",
"integrability",
"formation",
"model",
"values",
"efficiency",
"curves",
"variation",
"results",
"terms",
"e.",
"reservoir",
"depletion",
"argument",
"domain",
"long-term effects",
"procedure",
"cloud domain"
],
"name": "Long-term effects of the Galactic tide on cometary dynamics",
"pagination": "299-326",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009416228"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10569-006-9027-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10569-006-9027-8",
"https://app.dimensions.ai/details/publication/pub.1009416228"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_416.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10569-006-9027-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9027-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9027-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9027-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-006-9027-8'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
22 PREDICATES
93 URIs
80 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10569-006-9027-8 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N1cc7b01a3ed64ace97006f0dbadc9c82 |
4 | ″ | schema:citation | sg:pub.10.1007/978-94-009-5400-7_17 |
5 | ″ | ″ | sg:pub.10.1007/bf00049541 |
6 | ″ | ″ | sg:pub.10.1007/s10569-005-1149-x |
7 | ″ | ″ | sg:pub.10.1007/s10569-005-4820-3 |
8 | ″ | ″ | sg:pub.10.1023/a:1017540022538 |
9 | ″ | schema:datePublished | 2006-05 |
10 | ″ | schema:datePublishedReg | 2006-05-01 |
11 | ″ | schema:description | We introduce a model for integrating the effects of Galactic tides on Oort cloud comets, which involves two procedures, according to the values of the osculating semi-major axis a and eccentricity e. Ten simulations of the dynamics of 106 comets over 5 Gyr are performed using this model. We thus investigate the long-term effects of the Galactic tide with and without a radial component, the effects of the local density of the Galactic disk, and those of the Oort constants. Most of the results may be understood in terms of the integrability or non-integrability of the system. For an integrable system, which occurs for moderate semi-major axes with or without radial component, the dynamics is explained by periodic variation of the cometary perihelion, inducing the depletion of the outer region of the Oort cloud, a constant flux from the inner region after 500 Myr, and the quick formation of a reservoir of comets with argument of perihelion near 26.6°. When the system is non-integrable, the efficiency of the tide in reducing the cometary perihelion distance is enhanced both by replenishing the Oort cloud domain from which comets are sent toward the planetary system, and by reducing the minimal value that the perihelion distance may reach. No effects of varying the Oort constants were observed, showing that the flat rotation curve is a satisfactory approximation in Oort cloud dynamics. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | Nc0bdc1919e7b45ffa3538ec2052e8293 |
16 | ″ | ″ | Nc4cd04226d2648b3a973bdd7cc74cb84 |
17 | ″ | ″ | sg:journal.1136436 |
18 | ″ | schema:keywords | Galactic disk |
19 | ″ | ″ | Galactic tide |
20 | ″ | ″ | Gyr |
21 | ″ | ″ | Myr |
22 | ″ | ″ | Oort cloud |
23 | ″ | ″ | Oort cloud comets |
24 | ″ | ″ | Oort constants |
25 | ″ | ″ | approximation |
26 | ″ | ″ | argument |
27 | ″ | ″ | argument of perihelion |
28 | ″ | ″ | axes |
29 | ″ | ″ | axis |
30 | ″ | ″ | cloud |
31 | ″ | ″ | cloud domain |
32 | ″ | ″ | cloud dynamics |
33 | ″ | ″ | cometary dynamics |
34 | ″ | ″ | comets |
35 | ″ | ″ | components |
36 | ″ | ″ | constant flux |
37 | ″ | ″ | constants |
38 | ″ | ″ | curves |
39 | ″ | ″ | density |
40 | ″ | ″ | depletion |
41 | ″ | ″ | disk |
42 | ″ | ″ | distance |
43 | ″ | ″ | domain |
44 | ″ | ″ | dynamics |
45 | ″ | ″ | e. |
46 | ″ | ″ | eccentricity e. |
47 | ″ | ″ | effect |
48 | ″ | ″ | efficiency |
49 | ″ | ″ | flat rotation curves |
50 | ″ | ″ | flux |
51 | ″ | ″ | formation |
52 | ″ | ″ | inner region |
53 | ″ | ″ | integrability |
54 | ″ | ″ | integrable systems |
55 | ″ | ″ | local density |
56 | ″ | ″ | long-term effects |
57 | ″ | ″ | minimal value |
58 | ″ | ″ | model |
59 | ″ | ″ | outer region |
60 | ″ | ″ | perihelion |
61 | ″ | ″ | perihelion distance |
62 | ″ | ″ | periodic variation |
63 | ″ | ″ | planetary systems |
64 | ″ | ″ | procedure |
65 | ″ | ″ | quick formation |
66 | ″ | ″ | radial component |
67 | ″ | ″ | region |
68 | ″ | ″ | reservoir |
69 | ″ | ″ | results |
70 | ″ | ″ | rotation curves |
71 | ″ | ″ | satisfactory approximation |
72 | ″ | ″ | semi-major axes |
73 | ″ | ″ | semi-major axis |
74 | ″ | ″ | simulations |
75 | ″ | ″ | system |
76 | ″ | ″ | terms |
77 | ″ | ″ | tide |
78 | ″ | ″ | values |
79 | ″ | ″ | variation |
80 | ″ | schema:name | Long-term effects of the Galactic tide on cometary dynamics |
81 | ″ | schema:pagination | 299-326 |
82 | ″ | schema:productId | Nc3410c4a5a054b24b034cf69982eac1e |
83 | ″ | ″ | Ne39342399d144f129f1e7bb8645cdf71 |
84 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009416228 |
85 | ″ | ″ | https://doi.org/10.1007/s10569-006-9027-8 |
86 | ″ | schema:sdDatePublished | 2022-05-10T09:54 |
87 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
88 | ″ | schema:sdPublisher | Nea0c35ea02c2483a96fe0e6b03fe7578 |
89 | ″ | schema:url | https://doi.org/10.1007/s10569-006-9027-8 |
90 | ″ | sgo:license | sg:explorer/license/ |
91 | ″ | sgo:sdDataset | articles |
92 | ″ | rdf:type | schema:ScholarlyArticle |
93 | N00c712a377cf485482ae384f9dbec5a0 | rdf:first | sg:person.014712060747.04 |
94 | ″ | rdf:rest | Nfeecbe9aa60c4f4b8a93d962bafb1e35 |
95 | N1cc7b01a3ed64ace97006f0dbadc9c82 | rdf:first | sg:person.015127714775.16 |
96 | ″ | rdf:rest | Nc66d4ff5b55341ff903007d2ca5a5f64 |
97 | Nc0bdc1919e7b45ffa3538ec2052e8293 | schema:volumeNumber | 95 |
98 | ″ | rdf:type | schema:PublicationVolume |
99 | Nc3410c4a5a054b24b034cf69982eac1e | schema:name | doi |
100 | ″ | schema:value | 10.1007/s10569-006-9027-8 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | Nc4cd04226d2648b3a973bdd7cc74cb84 | schema:issueNumber | 1-4 |
103 | ″ | rdf:type | schema:PublicationIssue |
104 | Nc66d4ff5b55341ff903007d2ca5a5f64 | rdf:first | sg:person.013202724547.45 |
105 | ″ | rdf:rest | N00c712a377cf485482ae384f9dbec5a0 |
106 | Ne39342399d144f129f1e7bb8645cdf71 | schema:name | dimensions_id |
107 | ″ | schema:value | pub.1009416228 |
108 | ″ | rdf:type | schema:PropertyValue |
109 | Nea0c35ea02c2483a96fe0e6b03fe7578 | schema:name | Springer Nature - SN SciGraph project |
110 | ″ | rdf:type | schema:Organization |
111 | Nfeecbe9aa60c4f4b8a93d962bafb1e35 | rdf:first | sg:person.07601750547.97 |
112 | ″ | rdf:rest | rdf:nil |
113 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Mathematical Sciences |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Applied Mathematics |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | sg:journal.1136436 | schema:issn | 0923-2958 |
120 | ″ | ″ | 1572-9478 |
121 | ″ | schema:name | Celestial Mechanics and Dynamical Astronomy |
122 | ″ | schema:publisher | Springer Nature |
123 | ″ | rdf:type | schema:Periodical |
124 | sg:person.013202724547.45 | schema:affiliation | grid-institutes:grid.440460.2 |
125 | ″ | schema:familyName | Froeschlé |
126 | ″ | schema:givenName | Christiane |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.014712060747.04 | schema:affiliation | grid-institutes:grid.4293.c |
130 | ″ | schema:familyName | Valsecchi |
131 | ″ | schema:givenName | Giovanni |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014712060747.04 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.015127714775.16 | schema:affiliation | grid-institutes:grid.4307.0 |
135 | ″ | schema:familyName | Fouchard |
136 | ″ | schema:givenName | Marc |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.07601750547.97 | schema:affiliation | grid-institutes:None |
140 | ″ | schema:familyName | Rickman |
141 | ″ | schema:givenName | Hans |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601750547.97 |
143 | ″ | rdf:type | schema:Person |
144 | sg:pub.10.1007/978-94-009-5400-7_17 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053543195 |
145 | ″ | ″ | https://doi.org/10.1007/978-94-009-5400-7_17 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1007/bf00049541 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053051603 |
148 | ″ | ″ | https://doi.org/10.1007/bf00049541 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1007/s10569-005-1149-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005110770 |
151 | ″ | ″ | https://doi.org/10.1007/s10569-005-1149-x |
152 | ″ | rdf:type | schema:CreativeWork |
153 | sg:pub.10.1007/s10569-005-4820-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006237915 |
154 | ″ | ″ | https://doi.org/10.1007/s10569-005-4820-3 |
155 | ″ | rdf:type | schema:CreativeWork |
156 | sg:pub.10.1023/a:1017540022538 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049691570 |
157 | ″ | ″ | https://doi.org/10.1023/a:1017540022538 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | grid-institutes:None | schema:alternateName | Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden |
160 | ″ | schema:name | Uppsala Astronomical Observatory, Box 515, 75120, Uppsala, Sweden |
161 | ″ | rdf:type | schema:Organization |
162 | grid-institutes:grid.4293.c | schema:alternateName | INAF-IASF, via Fosso del Cavaliere 100, I-00133, Roma, Italy |
163 | ″ | schema:name | INAF-IASF, via Fosso del Cavaliere 100, I-00133, Roma, Italy |
164 | ″ | rdf:type | schema:Organization |
165 | grid-institutes:grid.4307.0 | schema:alternateName | IMCCE/SYRTE, Observatoire de Paris, 77 av. Denfert-Rochereau, 75014, Paris, France |
166 | ″ | schema:name | IMCCE/SYRTE, Observatoire de Paris, 77 av. Denfert-Rochereau, 75014, Paris, France |
167 | ″ | ″ | INAF-IASF, via Fosso del Cavaliere 100, I-00133, Roma, Italy |
168 | ″ | rdf:type | schema:Organization |
169 | grid-institutes:grid.440460.2 | schema:alternateName | Observatoire de la Côte d’Azur, UMR 6202, Bv. de l’Observatoire, B.P. 4229, 06304, Nice cedex 4, France |
170 | ″ | schema:name | Observatoire de la Côte d’Azur, UMR 6202, Bv. de l’Observatoire, B.P. 4229, 06304, Nice cedex 4, France |
171 | ″ | rdf:type | schema:Organization |