The Rotation of Europa View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-01

AUTHORS

Jacques Henrard

ABSTRACT

We present a semi-analytical theory of the rotation of Europa the Galilean satellite of Jupiter. The theory is semi-analytical in the sense that it is based on a synthetic theory of the orbit of Europa developed by Lainey. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables and assumes that Europa is a rigid body. We consider this theory as a first step toward the modelization of a non rigid Europa covered by an ocean. More... »

PAGES

131-149

References to SciGraph publications

  • 2003-05. Extension of Cassini's Laws in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1985-11. Fundamental coordinate ties using laser ranging data in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1982-02. Physical libration of the Moon in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1984-09. Planetary perturbations on the Libration of the Moon in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1987-09. Colombo's top in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2004-03. Rotation of Synchronous Satellites Application to the Galilean Satellites in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10569-005-3833-2

    DOI

    http://dx.doi.org/10.1007/s10569-005-3833-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039498745


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "D\u00e9partement de math\u00e9matique FUNDP, 8, Rempart de la Vierge, B-5000, Namur, Belgique"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henrard", 
            "givenName": "Jacques", 
            "id": "sg:person.015325672063.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325672063.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01235852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004763488", 
              "https://doi.org/10.1007/bf01235852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01235852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004763488", 
              "https://doi.org/10.1007/bf01235852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021035657", 
              "https://doi.org/10.1007/bf01230875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021035657", 
              "https://doi.org/10.1007/bf01230875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02285049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023617838", 
              "https://doi.org/10.1007/bf02285049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:cele.0000034515.57763.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032997623", 
              "https://doi.org/10.1023/b:cele.0000034515.57763.33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023614906996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035900459", 
              "https://doi.org/10.1023/a:1023614906996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/icar.2002.6828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046698218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/icar.1994.1154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048722660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01235808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052079600", 
              "https://doi.org/10.1007/bf01235808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01235808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052079600", 
              "https://doi.org/10.1007/bf01235808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/109947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058448557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/110825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058449404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1974113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062244525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.272.5262.709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062552910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.281.5385.2019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062562572"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-01", 
        "datePublishedReg": "2005-01-01", 
        "description": "We present a semi-analytical theory of the rotation of Europa the Galilean satellite of Jupiter. The theory is semi-analytical in the sense that it is based on a synthetic theory of the orbit of Europa developed by Lainey. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables and assumes that Europa is a rigid body. We consider this theory as a first step toward the modelization of a non rigid Europa covered by an ocean.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10569-005-3833-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "name": "The Rotation of Europa", 
        "pagination": "131-149", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bc27866f8b861b810c31705cb67a984cb743162b77d3af9360e1964dfcec0008"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10569-005-3833-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039498745"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10569-005-3833-2", 
          "https://app.dimensions.ai/details/publication/pub.1039498745"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13081_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10569-005-3833-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10569-005-3833-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10569-005-3833-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10569-005-3833-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10569-005-3833-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10569-005-3833-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndd975bb244cc47a0ae3dcbf4d0e9e1c6
    4 schema:citation sg:pub.10.1007/bf01230875
    5 sg:pub.10.1007/bf01235808
    6 sg:pub.10.1007/bf01235852
    7 sg:pub.10.1007/bf02285049
    8 sg:pub.10.1023/a:1023614906996
    9 sg:pub.10.1023/b:cele.0000034515.57763.33
    10 https://doi.org/10.1006/icar.1994.1154
    11 https://doi.org/10.1006/icar.2002.6828
    12 https://doi.org/10.1086/109947
    13 https://doi.org/10.1086/110825
    14 https://doi.org/10.1119/1.1974113
    15 https://doi.org/10.1126/science.272.5262.709
    16 https://doi.org/10.1126/science.281.5385.2019
    17 schema:datePublished 2005-01
    18 schema:datePublishedReg 2005-01-01
    19 schema:description We present a semi-analytical theory of the rotation of Europa the Galilean satellite of Jupiter. The theory is semi-analytical in the sense that it is based on a synthetic theory of the orbit of Europa developed by Lainey. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables and assumes that Europa is a rigid body. We consider this theory as a first step toward the modelization of a non rigid Europa covered by an ocean.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N0fd3273399ee41a2a60f4f36a0edacee
    24 Ne12cc11352dc4f1a845dfa222280b893
    25 sg:journal.1136436
    26 schema:name The Rotation of Europa
    27 schema:pagination 131-149
    28 schema:productId N1cd0247753c74288aa5e2da4b00d1d18
    29 N2fabbc2b3fc544ebae49e35181a76b88
    30 N94a509049ec64f72b27c4f0b858c2034
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039498745
    32 https://doi.org/10.1007/s10569-005-3833-2
    33 schema:sdDatePublished 2019-04-11T14:28
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N1c003afbc1734b50b7916ed0e092d889
    36 schema:url http://link.springer.com/10.1007%2Fs10569-005-3833-2
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N0fd3273399ee41a2a60f4f36a0edacee schema:issueNumber 1-2
    41 rdf:type schema:PublicationIssue
    42 N1c003afbc1734b50b7916ed0e092d889 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N1cd0247753c74288aa5e2da4b00d1d18 schema:name doi
    45 schema:value 10.1007/s10569-005-3833-2
    46 rdf:type schema:PropertyValue
    47 N2fabbc2b3fc544ebae49e35181a76b88 schema:name dimensions_id
    48 schema:value pub.1039498745
    49 rdf:type schema:PropertyValue
    50 N68b169c31d714718adf622e2b4a8f083 schema:name Département de mathématique FUNDP, 8, Rempart de la Vierge, B-5000, Namur, Belgique
    51 rdf:type schema:Organization
    52 N94a509049ec64f72b27c4f0b858c2034 schema:name readcube_id
    53 schema:value bc27866f8b861b810c31705cb67a984cb743162b77d3af9360e1964dfcec0008
    54 rdf:type schema:PropertyValue
    55 Ndd975bb244cc47a0ae3dcbf4d0e9e1c6 rdf:first sg:person.015325672063.39
    56 rdf:rest rdf:nil
    57 Ne12cc11352dc4f1a845dfa222280b893 schema:volumeNumber 91
    58 rdf:type schema:PublicationVolume
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Pure Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1136436 schema:issn 0008-8714
    66 0923-2958
    67 schema:name Celestial Mechanics and Dynamical Astronomy
    68 rdf:type schema:Periodical
    69 sg:person.015325672063.39 schema:affiliation N68b169c31d714718adf622e2b4a8f083
    70 schema:familyName Henrard
    71 schema:givenName Jacques
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325672063.39
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf01230875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021035657
    75 https://doi.org/10.1007/bf01230875
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf01235808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052079600
    78 https://doi.org/10.1007/bf01235808
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf01235852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004763488
    81 https://doi.org/10.1007/bf01235852
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf02285049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023617838
    84 https://doi.org/10.1007/bf02285049
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1023/a:1023614906996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035900459
    87 https://doi.org/10.1023/a:1023614906996
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1023/b:cele.0000034515.57763.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032997623
    90 https://doi.org/10.1023/b:cele.0000034515.57763.33
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1006/icar.1994.1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048722660
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1006/icar.2002.6828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046698218
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1086/109947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448557
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1086/110825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449404
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1119/1.1974113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062244525
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1126/science.272.5262.709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552910
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1126/science.281.5385.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062562572
    105 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...