Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-13

AUTHORS

Nguyen Thanh-Binh, Jean-Luc Dubois, Serge Kaliaguine

ABSTRACT

Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{N}_2}$$\end{document} physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests.Graphical Abstract More... »

PAGES

2826-2834

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10562-017-2171-9

DOI

http://dx.doi.org/10.1007/s10562-017-2171-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091597734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Laval University, 1065 Avenue de la M\u00e9decine, G1V 0A6, Qu\u00e9bec, Canada", 
          "id": "http://www.grid.ac/institutes/grid.23856.3a", 
          "name": [
            "Department of Chemical Engineering, Laval University, 1065 Avenue de la M\u00e9decine, G1V 0A6, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thanh-Binh", 
        "givenName": "Nguyen", 
        "id": "sg:person.07421777753.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421777753.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ARKEMA, 420 Rue d\u2019Estienne d\u2019Orves, 92705, Colombes, France", 
          "id": "http://www.grid.ac/institutes/grid.423748.e", 
          "name": [
            "ARKEMA, 420 Rue d\u2019Estienne d\u2019Orves, 92705, Colombes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubois", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.015632253113.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015632253113.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Laval University, 1065 Avenue de la M\u00e9decine, G1V 0A6, Qu\u00e9bec, Canada", 
          "id": "http://www.grid.ac/institutes/grid.23856.3a", 
          "name": [
            "Department of Chemical Engineering, Laval University, 1065 Avenue de la M\u00e9decine, G1V 0A6, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaliaguine", 
        "givenName": "Serge", 
        "id": "sg:person.01365252322.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365252322.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11244-006-0093-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043279277", 
          "https://doi.org/10.1007/s11244-006-0093-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03185357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016651653", 
          "https://doi.org/10.1007/bf03185357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368317a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013262087", 
          "https://doi.org/10.1038/368317a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/378366a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004096133", 
          "https://doi.org/10.1038/378366a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-13", 
    "datePublishedReg": "2017-09-13", 
    "description": "Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by N2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{N}_2}$$\\end{document} physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests.Graphical Abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10562-017-2171-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126974", 
        "issn": [
          "1011-372X", 
          "1572-879X"
        ], 
        "name": "Catalysis Letters", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "147"
      }
    ], 
    "keywords": [
      "high specific surface area materials", 
      "X-ray photoelectron spectroscopy", 
      "antimony oxide", 
      "metal oxide catalysts", 
      "surface area materials", 
      "thermal gravimetric analysis", 
      "ammoxidation of propylene", 
      "X-ray diffraction", 
      "ammoxidation of acrolein", 
      "transmission electron microscopy", 
      "acrylonitrile selectivity", 
      "acrolein conversion", 
      "acrylonitrile synthesis", 
      "catalytic tests", 
      "oxide catalysts", 
      "propylene ammoxidation", 
      "area materials", 
      "photoelectron spectroscopy", 
      "mesostructured silica", 
      "molybdenum oxide", 
      "ammoxidation", 
      "glycerol dehydration", 
      "Raman spectroscopy", 
      "gravimetric analysis", 
      "polymer industry", 
      "catalyst", 
      "molar ratio", 
      "electron microscopy", 
      "spectroscopy", 
      "oxide", 
      "synthesis", 
      "antimonate", 
      "present industrial practice", 
      "simple method", 
      "conversion", 
      "physisorption", 
      "fossil origin", 
      "selectivity", 
      "propylene", 
      "diffraction", 
      "silica", 
      "acrolein", 
      "chemicals", 
      "latter being", 
      "microscopy", 
      "mixture", 
      "dehydration", 
      "materials", 
      "industrial practice", 
      "fraction", 
      "plasma", 
      "major role", 
      "method", 
      "ratio", 
      "work", 
      "industry", 
      "order", 
      "analysis", 
      "origin", 
      "results", 
      "role", 
      "test", 
      "being", 
      "practice"
    ], 
    "name": "Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile", 
    "pagination": "2826-2834", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091597734"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10562-017-2171-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10562-017-2171-9", 
      "https://app.dimensions.ai/details/publication/pub.1091597734"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_734.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10562-017-2171-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2171-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2171-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2171-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2171-9'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      94 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10562-017-2171-9 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0303
4 anzsrc-for:0306
5 schema:author N5e2d43ae103c4904887d8182af99143f
6 schema:citation sg:pub.10.1007/bf03185357
7 sg:pub.10.1007/s11244-006-0093-7
8 sg:pub.10.1038/368317a0
9 sg:pub.10.1038/378366a0
10 schema:datePublished 2017-09-13
11 schema:datePublishedReg 2017-09-13
12 schema:description Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{N}_2}$$\end{document} physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests.Graphical Abstract
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N2c3ab61b967e45d8aedc37d6dcee1bba
16 Naac25aa524744cb38538024cd060939b
17 sg:journal.1126974
18 schema:keywords Raman spectroscopy
19 X-ray diffraction
20 X-ray photoelectron spectroscopy
21 acrolein
22 acrolein conversion
23 acrylonitrile selectivity
24 acrylonitrile synthesis
25 ammoxidation
26 ammoxidation of acrolein
27 ammoxidation of propylene
28 analysis
29 antimonate
30 antimony oxide
31 area materials
32 being
33 catalyst
34 catalytic tests
35 chemicals
36 conversion
37 dehydration
38 diffraction
39 electron microscopy
40 fossil origin
41 fraction
42 glycerol dehydration
43 gravimetric analysis
44 high specific surface area materials
45 industrial practice
46 industry
47 latter being
48 major role
49 materials
50 mesostructured silica
51 metal oxide catalysts
52 method
53 microscopy
54 mixture
55 molar ratio
56 molybdenum oxide
57 order
58 origin
59 oxide
60 oxide catalysts
61 photoelectron spectroscopy
62 physisorption
63 plasma
64 polymer industry
65 practice
66 present industrial practice
67 propylene
68 propylene ammoxidation
69 ratio
70 results
71 role
72 selectivity
73 silica
74 simple method
75 spectroscopy
76 surface area materials
77 synthesis
78 test
79 thermal gravimetric analysis
80 transmission electron microscopy
81 work
82 schema:name Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile
83 schema:pagination 2826-2834
84 schema:productId N560a4b460cd14e6f8d8876241a49ca91
85 N7d608461832040e6976e8fec1e295f23
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091597734
87 https://doi.org/10.1007/s10562-017-2171-9
88 schema:sdDatePublished 2022-12-01T06:36
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N2146d77cdc074b2db19b7063c20669b3
91 schema:url https://doi.org/10.1007/s10562-017-2171-9
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N2146d77cdc074b2db19b7063c20669b3 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N2c3ab61b967e45d8aedc37d6dcee1bba schema:volumeNumber 147
98 rdf:type schema:PublicationVolume
99 N45ecd52cc53e427a8092547162c4a2ba rdf:first sg:person.015632253113.98
100 rdf:rest N93c99d951c8847a298351aef32e83d54
101 N560a4b460cd14e6f8d8876241a49ca91 schema:name doi
102 schema:value 10.1007/s10562-017-2171-9
103 rdf:type schema:PropertyValue
104 N5e2d43ae103c4904887d8182af99143f rdf:first sg:person.07421777753.44
105 rdf:rest N45ecd52cc53e427a8092547162c4a2ba
106 N7d608461832040e6976e8fec1e295f23 schema:name dimensions_id
107 schema:value pub.1091597734
108 rdf:type schema:PropertyValue
109 N93c99d951c8847a298351aef32e83d54 rdf:first sg:person.01365252322.30
110 rdf:rest rdf:nil
111 Naac25aa524744cb38538024cd060939b schema:issueNumber 11
112 rdf:type schema:PublicationIssue
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
117 schema:name Inorganic Chemistry
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
120 schema:name Macromolecular and Materials Chemistry
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
123 schema:name Physical Chemistry (incl. Structural)
124 rdf:type schema:DefinedTerm
125 sg:journal.1126974 schema:issn 1011-372X
126 1572-879X
127 schema:name Catalysis Letters
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01365252322.30 schema:affiliation grid-institutes:grid.23856.3a
131 schema:familyName Kaliaguine
132 schema:givenName Serge
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365252322.30
134 rdf:type schema:Person
135 sg:person.015632253113.98 schema:affiliation grid-institutes:grid.423748.e
136 schema:familyName Dubois
137 schema:givenName Jean-Luc
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015632253113.98
139 rdf:type schema:Person
140 sg:person.07421777753.44 schema:affiliation grid-institutes:grid.23856.3a
141 schema:familyName Thanh-Binh
142 schema:givenName Nguyen
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421777753.44
144 rdf:type schema:Person
145 sg:pub.10.1007/bf03185357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016651653
146 https://doi.org/10.1007/bf03185357
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11244-006-0093-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043279277
149 https://doi.org/10.1007/s11244-006-0093-7
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/368317a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013262087
152 https://doi.org/10.1038/368317a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/378366a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004096133
155 https://doi.org/10.1038/378366a0
156 rdf:type schema:CreativeWork
157 grid-institutes:grid.23856.3a schema:alternateName Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V 0A6, Québec, Canada
158 schema:name Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V 0A6, Québec, Canada
159 rdf:type schema:Organization
160 grid-institutes:grid.423748.e schema:alternateName ARKEMA, 420 Rue d’Estienne d’Orves, 92705, Colombes, France
161 schema:name ARKEMA, 420 Rue d’Estienne d’Orves, 92705, Colombes, France
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...