High NOx Reduction Activity of an Ultrathin Zirconia Film Covering a Cu Surface: A DFT Study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Hiroaki Koga, Kohei Tada, Akihide Hayashi, Yoshinori Ato, Mitsutaka Okumura

ABSTRACT

NO reduction by CO over a c-ZrO2(110) ultrathin film covering a Cu(110) surface (ZrO2/Cu) has been examined by means of density-functional theory calculations. Spontaneous transfer of electronic charge from Cu to zirconia gives the latter an ability to reduce oxidants. Gaining this excess charge, NO adsorbs and activates on the cationic Zr site of the oxide surface. Thus activated, two NO on adjacent Zr sites can react to form ONNO with an activation energy of 0.39 eV (8.9 kcal/mol), which readily decomposes into N2O and an O adatom. N2O also decomposes into N2 and an O adatom with negligible activation energy of 0.06 eV (1.4 kcal/mol). CO reacts off the O adatoms left on the surface as CO2 with an activation energy of 0.36 eV (8.2 kcal/mol), completing a redox cycle. These results indicate high potentials of oxide-covered metal catalysts (metal@oxide) for NOx abatement. More... »

PAGES

1827-1833

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10562-017-2086-5

DOI

http://dx.doi.org/10.1007/s10562-017-2086-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085594061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, 615-8245, Kyoto, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koga", 
        "givenName": "Hiroaki", 
        "id": "sg:person.013702403531.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702403531.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Medical Center and Research Institute for Maternal and Child Health", 
          "id": "https://www.grid.ac/institutes/grid.416629.e", 
          "name": [
            "Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, 563-8577, Ikeda, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tada", 
        "givenName": "Kohei", 
        "id": "sg:person.011404663156.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404663156.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Akihide", 
        "id": "sg:person.012505512741.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012505512741.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ato", 
        "givenName": "Yoshinori", 
        "id": "sg:person.016112075026.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016112075026.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, 615-8245, Kyoto, Kyoto, Japan", 
            "Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okumura", 
        "givenName": "Mitsutaka", 
        "id": "sg:person.01326473606.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326473606.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00214-016-1852-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001005516", 
          "https://doi.org/10.1007/s00214-016-1852-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003432400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003432400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005168385", 
          "https://doi.org/10.1038/nmat2740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005168385", 
          "https://doi.org/10.1038/nmat2740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2009.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006911372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201005729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009684967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201000437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012291794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201000437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012291794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201001724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013332231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2005.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015956400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(86)90354-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016424294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(90)90524-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020944504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(90)90524-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020944504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02066722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023233689", 
          "https://doi.org/10.1007/bf02066722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02066722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023233689", 
          "https://doi.org/10.1007/bf02066722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5861(96)00198-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023240419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3553716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025813372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-physchem-032511-143737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029625479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-9834(00)82507-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031336716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b718768h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032292575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2013.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036052408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a704625a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038390669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10562-005-8685-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042617958", 
          "https://doi.org/10.1007/s10562-005-8685-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10562-005-8685-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042617958", 
          "https://doi.org/10.1007/s10562-005-8685-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2016.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042971496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889811038970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048136594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2014.06.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048551560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp5100846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049190331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053172531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:toca.0000024340.33790.f8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053370335", 
          "https://doi.org/10.1023/b:toca.0000024340.33790.f8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cctc.201000388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053530335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr100168g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053774576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr100168g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053774576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cs4004084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055422350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cs500223z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055422665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cs501153p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055422898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja906865f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055862320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja906865f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055862320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp503745c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056100962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2104507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057837701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.480097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058073990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.11560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.11560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/cl.161121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084256680"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "NO reduction by CO over a c-ZrO2(110) ultrathin film covering a Cu(110) surface (ZrO2/Cu) has been examined by means of density-functional theory calculations. Spontaneous transfer of electronic charge from Cu to zirconia gives the latter an ability to reduce oxidants. Gaining this excess charge, NO adsorbs and activates on the cationic Zr site of the oxide surface. Thus activated, two NO on adjacent Zr sites can react to form ONNO with an activation energy of 0.39 eV (8.9 kcal/mol), which readily decomposes into N2O and an O adatom. N2O also decomposes into N2 and an O adatom with negligible activation energy of 0.06 eV (1.4 kcal/mol). CO reacts off the O adatoms left on the surface as CO2 with an activation energy of 0.36 eV (8.2 kcal/mol), completing a redox cycle. These results indicate high potentials of oxide-covered metal catalysts (metal@oxide) for NOx abatement. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10562-017-2086-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126974", 
        "issn": [
          "1011-372X", 
          "1572-879X"
        ], 
        "name": "Catalysis Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "147"
      }
    ], 
    "name": "High NOx Reduction Activity of an Ultrathin Zirconia Film Covering a Cu Surface: A DFT Study", 
    "pagination": "1827-1833", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d420cae4cbd76f616186951a05d9f8838935996ce4d9020bd50fb2e9192a61c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10562-017-2086-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085594061"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10562-017-2086-5", 
      "https://app.dimensions.ai/details/publication/pub.1085594061"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10562-017-2086-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2086-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2086-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2086-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10562-017-2086-5'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10562-017-2086-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na5cf8b7928ab4766a78103a83ba51c93
4 schema:citation sg:pub.10.1007/bf02066722
5 sg:pub.10.1007/s00214-016-1852-6
6 sg:pub.10.1007/s10562-005-8685-6
7 sg:pub.10.1023/b:toca.0000024340.33790.f8
8 sg:pub.10.1038/nmat2740
9 https://doi.org/10.1002/anie.201000437
10 https://doi.org/10.1002/anie.201005729
11 https://doi.org/10.1002/cctc.201000388
12 https://doi.org/10.1002/chem.201001724
13 https://doi.org/10.1002/jcc.20495
14 https://doi.org/10.1002/jcc.20575
15 https://doi.org/10.1016/0021-9517(86)90354-4
16 https://doi.org/10.1016/0039-6028(90)90524-c
17 https://doi.org/10.1016/0927-0256(96)00008-0
18 https://doi.org/10.1016/j.catcom.2016.01.024
19 https://doi.org/10.1016/j.commatsci.2005.04.010
20 https://doi.org/10.1016/j.cplett.2013.06.023
21 https://doi.org/10.1016/j.cplett.2014.06.061
22 https://doi.org/10.1016/j.jcat.2009.07.002
23 https://doi.org/10.1016/s0166-9834(00)82507-5
24 https://doi.org/10.1016/s0920-5861(96)00198-8
25 https://doi.org/10.1021/cr100168g
26 https://doi.org/10.1021/cs4004084
27 https://doi.org/10.1021/cs500223z
28 https://doi.org/10.1021/cs501153p
29 https://doi.org/10.1021/ja906865f
30 https://doi.org/10.1021/jp503745c
31 https://doi.org/10.1021/jp5100846
32 https://doi.org/10.1039/a704625a
33 https://doi.org/10.1039/b718768h
34 https://doi.org/10.1063/1.2104507
35 https://doi.org/10.1063/1.3553716
36 https://doi.org/10.1063/1.480097
37 https://doi.org/10.1103/physrevb.47.558
38 https://doi.org/10.1103/physrevb.49.11560
39 https://doi.org/10.1103/physrevb.49.14251
40 https://doi.org/10.1103/physrevb.50.17953
41 https://doi.org/10.1103/physrevb.54.11169
42 https://doi.org/10.1103/physrevb.57.1505
43 https://doi.org/10.1103/physrevb.59.1758
44 https://doi.org/10.1103/physrevb.86.035451
45 https://doi.org/10.1103/physrevlett.77.3865
46 https://doi.org/10.1107/s0021889811038970
47 https://doi.org/10.1146/annurev-physchem-032511-143737
48 https://doi.org/10.1246/cl.161121
49 schema:datePublished 2017-07
50 schema:datePublishedReg 2017-07-01
51 schema:description NO reduction by CO over a c-ZrO2(110) ultrathin film covering a Cu(110) surface (ZrO2/Cu) has been examined by means of density-functional theory calculations. Spontaneous transfer of electronic charge from Cu to zirconia gives the latter an ability to reduce oxidants. Gaining this excess charge, NO adsorbs and activates on the cationic Zr site of the oxide surface. Thus activated, two NO on adjacent Zr sites can react to form ONNO with an activation energy of 0.39 eV (8.9 kcal/mol), which readily decomposes into N2O and an O adatom. N2O also decomposes into N2 and an O adatom with negligible activation energy of 0.06 eV (1.4 kcal/mol). CO reacts off the O adatoms left on the surface as CO2 with an activation energy of 0.36 eV (8.2 kcal/mol), completing a redox cycle. These results indicate high potentials of oxide-covered metal catalysts (metal@oxide) for NOx abatement.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf Nd758d24ce89e4bd1970f72b162eb5ed6
56 Ne3949b3fbd214b489146d14eb0fc01bb
57 sg:journal.1126974
58 schema:name High NOx Reduction Activity of an Ultrathin Zirconia Film Covering a Cu Surface: A DFT Study
59 schema:pagination 1827-1833
60 schema:productId N5f1e83cb89d14027bd860c2d4cea6675
61 N95fbbcc8ea834488a940914012014be4
62 Nb676270eb51545a296a95c25bfdcadf5
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085594061
64 https://doi.org/10.1007/s10562-017-2086-5
65 schema:sdDatePublished 2019-04-11T09:54
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N80f04392c7ca4c278023312abc4ac345
68 schema:url https://link.springer.com/10.1007%2Fs10562-017-2086-5
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0d123a99f12e424db30bdf065c5a38bc rdf:first sg:person.01326473606.27
73 rdf:rest rdf:nil
74 N5f1e83cb89d14027bd860c2d4cea6675 schema:name doi
75 schema:value 10.1007/s10562-017-2086-5
76 rdf:type schema:PropertyValue
77 N78075299aa4f4370be1b24125bbcbafa rdf:first sg:person.016112075026.55
78 rdf:rest N0d123a99f12e424db30bdf065c5a38bc
79 N7bc5477a22174bd695e8219d02b67e4e rdf:first sg:person.012505512741.71
80 rdf:rest N78075299aa4f4370be1b24125bbcbafa
81 N80f04392c7ca4c278023312abc4ac345 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N95fbbcc8ea834488a940914012014be4 schema:name dimensions_id
84 schema:value pub.1085594061
85 rdf:type schema:PropertyValue
86 Na5cf8b7928ab4766a78103a83ba51c93 rdf:first sg:person.013702403531.37
87 rdf:rest Nafdfc094a47f4a24a56c1a56919675af
88 Nafdfc094a47f4a24a56c1a56919675af rdf:first sg:person.011404663156.46
89 rdf:rest N7bc5477a22174bd695e8219d02b67e4e
90 Nb676270eb51545a296a95c25bfdcadf5 schema:name readcube_id
91 schema:value 4d420cae4cbd76f616186951a05d9f8838935996ce4d9020bd50fb2e9192a61c
92 rdf:type schema:PropertyValue
93 Nd758d24ce89e4bd1970f72b162eb5ed6 schema:issueNumber 7
94 rdf:type schema:PublicationIssue
95 Ne3949b3fbd214b489146d14eb0fc01bb schema:volumeNumber 147
96 rdf:type schema:PublicationVolume
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 sg:journal.1126974 schema:issn 1011-372X
104 1572-879X
105 schema:name Catalysis Letters
106 rdf:type schema:Periodical
107 sg:person.011404663156.46 schema:affiliation https://www.grid.ac/institutes/grid.416629.e
108 schema:familyName Tada
109 schema:givenName Kohei
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404663156.46
111 rdf:type schema:Person
112 sg:person.012505512741.71 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
113 schema:familyName Hayashi
114 schema:givenName Akihide
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012505512741.71
116 rdf:type schema:Person
117 sg:person.01326473606.27 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
118 schema:familyName Okumura
119 schema:givenName Mitsutaka
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326473606.27
121 rdf:type schema:Person
122 sg:person.013702403531.37 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
123 schema:familyName Koga
124 schema:givenName Hiroaki
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702403531.37
126 rdf:type schema:Person
127 sg:person.016112075026.55 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
128 schema:familyName Ato
129 schema:givenName Yoshinori
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016112075026.55
131 rdf:type schema:Person
132 sg:pub.10.1007/bf02066722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023233689
133 https://doi.org/10.1007/bf02066722
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00214-016-1852-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001005516
136 https://doi.org/10.1007/s00214-016-1852-6
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10562-005-8685-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042617958
139 https://doi.org/10.1007/s10562-005-8685-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1023/b:toca.0000024340.33790.f8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053370335
142 https://doi.org/10.1023/b:toca.0000024340.33790.f8
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nmat2740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005168385
145 https://doi.org/10.1038/nmat2740
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/anie.201000437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012291794
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/anie.201005729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009684967
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/cctc.201000388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053530335
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/chem.201001724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013332231
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/jcc.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734228
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/jcc.20575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172531
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0021-9517(86)90354-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016424294
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0039-6028(90)90524-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1020944504
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.catcom.2016.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042971496
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.commatsci.2005.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956400
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.cplett.2013.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036052408
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.cplett.2014.06.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048551560
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jcat.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006911372
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0166-9834(00)82507-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031336716
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0920-5861(96)00198-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023240419
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/cr100168g schema:sameAs https://app.dimensions.ai/details/publication/pub.1053774576
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/cs4004084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055422350
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/cs500223z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055422665
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/cs501153p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055422898
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ja906865f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055862320
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/jp503745c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056100962
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/jp5100846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049190331
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/a704625a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390669
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1039/b718768h schema:sameAs https://app.dimensions.ai/details/publication/pub.1032292575
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.2104507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057837701
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1063/1.3553716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025813372
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1063/1.480097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058073990
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.49.11560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569645
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.49.14251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570025
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.57.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587642
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.86.035451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003432400
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1107/s0021889811038970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048136594
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1146/annurev-physchem-032511-143737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029625479
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1246/cl.161121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084256680
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
228 schema:name Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
229 Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, 615-8245, Kyoto, Kyoto, Japan
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
232 schema:name Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, 615-8245, Kyoto, Kyoto, Japan
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.416629.e schema:alternateName Osaka Medical Center and Research Institute for Maternal and Child Health
235 schema:name Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, 563-8577, Ikeda, Osaka, Japan
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...