Predictive value of electrocardiography-gated myocardial perfusion imaging to new-onset heart failure in patients with chronic kidney disease: findings from the ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-02-15

AUTHORS

Mamoru Nanasato, Shinro Matsuo, Kenichi Nakajima, Shigeyuki Nishimura, Tsunehiko Nishimura

ABSTRACT

The incidence of heart failure (HF) increases in patients with chronic kidney disease (CKD). Factors that could predict patients with CKD who are at high risk for developing HF should be identified. We analysed clinical parameters and stress/rest myocardial perfusion imaging (MPI) findings derived from 499 patients with CKD by the Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT 3 (J-ACCESS 3) to clarify predictors of new-onset HF. Forty-one patients with congestive HF in the J-ACCESS 3 database were followed up for three years. Multivariable Cox hazards models selected haemoglobin (hazard ratio [HR] 0.809; 95% confidence interval [CI] 0.679–0.964), summed stress score (HR 1.082; 95% CI 1.016–1.151) and left ventricular ejection fraction (HR 0.970; 95% CI 0.949–0.992) as independent predictors of new-onset HF. Haemoglobin combined with summed stress scores and ejection fraction had the greatest incremental prognostic value over any one or more combined factors (global χ2, 29.9). Anaemia, stress-induced myocardial ischaemia, and left ventricular contraction are independent predictors of risk of new-onset HF in patients with CKD. Stress/rest MPI provides additional information with which to identify patients with CKD at greater risk of new-onset HF. More... »

PAGES

749-755

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-019-01761-z

DOI

http://dx.doi.org/10.1007/s10554-019-01761-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1124904237

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32062711


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac-Gated Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Failure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Renal Insufficiency, Chronic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.413411.2", 
          "name": [
            "Cardiovascular Center, Nagoya Daini Red Cross Hospital, Nagoya, Japan", 
            "Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nanasato", 
        "givenName": "Mamoru", 
        "id": "sg:person.01060634467.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060634467.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412002.5", 
          "name": [
            "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuo", 
        "givenName": "Shinro", 
        "id": "sg:person.01206070466.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206070466.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Nuclear Medicine/Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Departments of Nuclear Medicine/Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakajima", 
        "givenName": "Kenichi", 
        "id": "sg:person.014366212412.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama Medical University International Medical Center, Hidaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412377.4", 
          "name": [
            "Saitama Medical University International Medical Center, Hidaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimura", 
        "givenName": "Shigeyuki", 
        "id": "sg:person.016665110142.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665110142.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawara-machi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawara-machi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimura", 
        "givenName": "Tsunehiko", 
        "id": "sg:person.01371365606.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371365606.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-005-1916-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047719218", 
          "https://doi.org/10.1007/s00259-005-1916-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3197-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023217813", 
          "https://doi.org/10.1007/s00259-015-3197-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-017-0880-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085054646", 
          "https://doi.org/10.1007/s12350-017-0880-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-009-0337-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011497547", 
          "https://doi.org/10.1007/s12149-009-0337-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-02-15", 
    "datePublishedReg": "2020-02-15", 
    "description": "The incidence of heart failure (HF) increases in patients with chronic kidney disease (CKD). Factors that could predict patients with CKD who are at high risk for developing HF should be identified. We analysed clinical parameters and stress/rest myocardial perfusion imaging (MPI) findings derived from 499 patients with CKD by the Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT 3 (J-ACCESS 3) to clarify predictors of new-onset HF. Forty-one patients with congestive HF in the J-ACCESS 3 database were followed up for three years. Multivariable Cox hazards models selected haemoglobin (hazard ratio [HR] 0.809; 95% confidence interval [CI] 0.679\u20130.964), summed stress score (HR 1.082; 95% CI 1.016\u20131.151) and left ventricular ejection fraction (HR 0.970; 95% CI 0.949\u20130.992) as independent predictors of new-onset HF. Haemoglobin combined with summed stress scores and ejection fraction had the greatest incremental prognostic value over any one or more combined factors (global \u03c72, 29.9). Anaemia, stress-induced myocardial ischaemia, and left ventricular contraction are independent predictors of risk of new-onset HF in patients with CKD. Stress/rest MPI provides additional information with which to identify patients with CKD at greater risk of new-onset HF.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10554-019-01761-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "chronic kidney disease", 
      "new-onset HF", 
      "ejection fraction", 
      "independent predictors", 
      "kidney disease", 
      "multivariable Cox hazard model", 
      "stress-induced myocardial ischaemia", 
      "new-onset heart failure", 
      "stress scores", 
      "heart failure increases", 
      "incremental prognostic value", 
      "ventricular ejection fraction", 
      "summed stress score", 
      "Cox hazard model", 
      "congestive HF", 
      "cardiac events", 
      "heart failure", 
      "imaging findings", 
      "clinical parameters", 
      "prognostic value", 
      "myocardial ischaemia", 
      "rest MPI", 
      "high risk", 
      "ventricular contractions", 
      "myocardial perfusion", 
      "hazards model", 
      "patients", 
      "predictive value", 
      "Japanese Assessment", 
      "greater risk", 
      "survival studies", 
      "disease", 
      "risk", 
      "predictors", 
      "hemoglobin", 
      "scores", 
      "ischaemia", 
      "anemia", 
      "perfusion", 
      "incidence", 
      "findings", 
      "factors", 
      "additional information", 
      "contraction", 
      "study", 
      "combined factors", 
      "failure", 
      "years", 
      "failure increases", 
      "assessment", 
      "database", 
      "HF", 
      "fraction", 
      "increase", 
      "events", 
      "values", 
      "information", 
      "model", 
      "parameters", 
      "MPI"
    ], 
    "name": "Predictive value of electrocardiography-gated myocardial perfusion imaging to new-onset heart failure in patients with chronic kidney disease: findings from the J-ACCESS 3 study", 
    "pagination": "749-755", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1124904237"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-019-01761-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32062711"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-019-01761-z", 
      "https://app.dimensions.ai/details/publication/pub.1124904237"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_843.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10554-019-01761-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01761-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01761-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01761-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01761-z'


 

This table displays all metadata directly associated to this object as RDF triples.

278 TRIPLES      21 PREDICATES      114 URIs      101 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-019-01761-z schema:about N01ea5a0ff95244fe86a3f11a8b076527
2 N115fd8fc510248c2a2ee82a1f5d1293f
3 N17b8de52e3aa49879120f190baf92657
4 N1d7322e6e46c4e41b2766d286044541a
5 N2eaf8ffc447248c691c1f979887998b3
6 N340b74055e0546b3b881c7a931ff5ab9
7 N36c949eafd1f4e6182ab02c546ba64a0
8 N37036d27e48c41cfab83590ead909690
9 N3ef1035f68334d13943e53daceae9123
10 N5072441adcdf4381be1904a5b790224a
11 N58ebfa8ba08c4839b2ded307868b5a42
12 N5f0ffb0534f74161b1943b8ce4a45fba
13 N6101484d63f3416d8f880bb54fbb40fe
14 N69627e0208734375aabdcd4054d69842
15 N6ef334cf6bb64f89b352bb34e98a7bd6
16 N7da6754b3ec84ce1be939a9f6461bf03
17 N9a6e161075ec4ad890c719678845a6fd
18 Na52c11917db14b28b4bbd253ad99cc4a
19 Nb7fe6bfee66a4d0a94f6fb1d065049f3
20 Nc52a81edc5b544fcabd04acb047cc1e4
21 Ndfd2801c6560424da61ef671e256fd77
22 Ne66537b1fa5c404f98f4a483c76bb8df
23 Ne66ecbede5544e11b1319d37fa1d4e9c
24 Nfc2e92ca316f4e2283bd3cbacd89369e
25 anzsrc-for:11
26 anzsrc-for:1102
27 anzsrc-for:1103
28 schema:author Ncde5cd24348547e9923aab24285c9b44
29 schema:citation sg:pub.10.1007/s00259-005-1916-7
30 sg:pub.10.1007/s00259-015-3197-0
31 sg:pub.10.1007/s12149-009-0337-2
32 sg:pub.10.1007/s12350-017-0880-5
33 schema:datePublished 2020-02-15
34 schema:datePublishedReg 2020-02-15
35 schema:description The incidence of heart failure (HF) increases in patients with chronic kidney disease (CKD). Factors that could predict patients with CKD who are at high risk for developing HF should be identified. We analysed clinical parameters and stress/rest myocardial perfusion imaging (MPI) findings derived from 499 patients with CKD by the Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT 3 (J-ACCESS 3) to clarify predictors of new-onset HF. Forty-one patients with congestive HF in the J-ACCESS 3 database were followed up for three years. Multivariable Cox hazards models selected haemoglobin (hazard ratio [HR] 0.809; 95% confidence interval [CI] 0.679–0.964), summed stress score (HR 1.082; 95% CI 1.016–1.151) and left ventricular ejection fraction (HR 0.970; 95% CI 0.949–0.992) as independent predictors of new-onset HF. Haemoglobin combined with summed stress scores and ejection fraction had the greatest incremental prognostic value over any one or more combined factors (global χ2, 29.9). Anaemia, stress-induced myocardial ischaemia, and left ventricular contraction are independent predictors of risk of new-onset HF in patients with CKD. Stress/rest MPI provides additional information with which to identify patients with CKD at greater risk of new-onset HF.
36 schema:genre article
37 schema:isAccessibleForFree false
38 schema:isPartOf Nd823c850c31143c0b8c17f6f69eff215
39 Ndaddebac23df404ba9f0a50628bea55d
40 sg:journal.1025429
41 schema:keywords Cox hazard model
42 HF
43 Japanese Assessment
44 MPI
45 additional information
46 anemia
47 assessment
48 cardiac events
49 chronic kidney disease
50 clinical parameters
51 combined factors
52 congestive HF
53 contraction
54 database
55 disease
56 ejection fraction
57 events
58 factors
59 failure
60 failure increases
61 findings
62 fraction
63 greater risk
64 hazards model
65 heart failure
66 heart failure increases
67 hemoglobin
68 high risk
69 imaging findings
70 incidence
71 increase
72 incremental prognostic value
73 independent predictors
74 information
75 ischaemia
76 kidney disease
77 model
78 multivariable Cox hazard model
79 myocardial ischaemia
80 myocardial perfusion
81 new-onset HF
82 new-onset heart failure
83 parameters
84 patients
85 perfusion
86 predictive value
87 predictors
88 prognostic value
89 rest MPI
90 risk
91 scores
92 stress scores
93 stress-induced myocardial ischaemia
94 study
95 summed stress score
96 survival studies
97 values
98 ventricular contractions
99 ventricular ejection fraction
100 years
101 schema:name Predictive value of electrocardiography-gated myocardial perfusion imaging to new-onset heart failure in patients with chronic kidney disease: findings from the J-ACCESS 3 study
102 schema:pagination 749-755
103 schema:productId N40d949b7dd484adf8358757aa558f8fa
104 N5c0657b5f3124ff1b5061508bb32774c
105 N83b9469ea2d04a558d0783279a9ea637
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124904237
107 https://doi.org/10.1007/s10554-019-01761-z
108 schema:sdDatePublished 2022-10-01T06:47
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher Need6ef62cd9741a5b5f7d2714f47b739
111 schema:url https://doi.org/10.1007/s10554-019-01761-z
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N01ea5a0ff95244fe86a3f11a8b076527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Male
117 rdf:type schema:DefinedTerm
118 N115fd8fc510248c2a2ee82a1f5d1293f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Ventricular Function, Left
120 rdf:type schema:DefinedTerm
121 N172909ba055c41e5909b75dbf025176d rdf:first sg:person.01371365606.00
122 rdf:rest rdf:nil
123 N17b8de52e3aa49879120f190baf92657 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Middle Aged
125 rdf:type schema:DefinedTerm
126 N1d7322e6e46c4e41b2766d286044541a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Aged, 80 and over
128 rdf:type schema:DefinedTerm
129 N2eaf8ffc447248c691c1f979887998b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Databases, Factual
131 rdf:type schema:DefinedTerm
132 N340b74055e0546b3b881c7a931ff5ab9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Prognosis
134 rdf:type schema:DefinedTerm
135 N36c949eafd1f4e6182ab02c546ba64a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Follow-Up Studies
137 rdf:type schema:DefinedTerm
138 N37036d27e48c41cfab83590ead909690 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Predictive Value of Tests
140 rdf:type schema:DefinedTerm
141 N3ef1035f68334d13943e53daceae9123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Myocardial Perfusion Imaging
143 rdf:type schema:DefinedTerm
144 N40d949b7dd484adf8358757aa558f8fa schema:name doi
145 schema:value 10.1007/s10554-019-01761-z
146 rdf:type schema:PropertyValue
147 N5072441adcdf4381be1904a5b790224a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Aged
149 rdf:type schema:DefinedTerm
150 N58ebfa8ba08c4839b2ded307868b5a42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Time Factors
152 rdf:type schema:DefinedTerm
153 N5c0657b5f3124ff1b5061508bb32774c schema:name dimensions_id
154 schema:value pub.1124904237
155 rdf:type schema:PropertyValue
156 N5f0ffb0534f74161b1943b8ce4a45fba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Heart Failure
158 rdf:type schema:DefinedTerm
159 N6101484d63f3416d8f880bb54fbb40fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Female
161 rdf:type schema:DefinedTerm
162 N69627e0208734375aabdcd4054d69842 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Anemia
164 rdf:type schema:DefinedTerm
165 N6ef334cf6bb64f89b352bb34e98a7bd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Myocardial Contraction
167 rdf:type schema:DefinedTerm
168 N763aef64596d4bc4ac3bf928a98b3014 rdf:first sg:person.014366212412.16
169 rdf:rest N9a89f95ca67a428fae866138efbd6c0a
170 N7da6754b3ec84ce1be939a9f6461bf03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Renal Insufficiency, Chronic
172 rdf:type schema:DefinedTerm
173 N83b9469ea2d04a558d0783279a9ea637 schema:name pubmed_id
174 schema:value 32062711
175 rdf:type schema:PropertyValue
176 N942e43cdb7ad4e2680430755aeb29357 rdf:first sg:person.01206070466.49
177 rdf:rest N763aef64596d4bc4ac3bf928a98b3014
178 N9a6e161075ec4ad890c719678845a6fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Japan
180 rdf:type schema:DefinedTerm
181 N9a89f95ca67a428fae866138efbd6c0a rdf:first sg:person.016665110142.28
182 rdf:rest N172909ba055c41e5909b75dbf025176d
183 Na52c11917db14b28b4bbd253ad99cc4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Risk Factors
185 rdf:type schema:DefinedTerm
186 Nb7fe6bfee66a4d0a94f6fb1d065049f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Cardiac-Gated Imaging Techniques
188 rdf:type schema:DefinedTerm
189 Nc52a81edc5b544fcabd04acb047cc1e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Risk Assessment
191 rdf:type schema:DefinedTerm
192 Ncde5cd24348547e9923aab24285c9b44 rdf:first sg:person.01060634467.02
193 rdf:rest N942e43cdb7ad4e2680430755aeb29357
194 Nd823c850c31143c0b8c17f6f69eff215 schema:volumeNumber 36
195 rdf:type schema:PublicationVolume
196 Ndaddebac23df404ba9f0a50628bea55d schema:issueNumber 4
197 rdf:type schema:PublicationIssue
198 Ndfd2801c6560424da61ef671e256fd77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Tomography, Emission-Computed, Single-Photon
200 rdf:type schema:DefinedTerm
201 Ne66537b1fa5c404f98f4a483c76bb8df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Prospective Studies
203 rdf:type schema:DefinedTerm
204 Ne66ecbede5544e11b1319d37fa1d4e9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Humans
206 rdf:type schema:DefinedTerm
207 Need6ef62cd9741a5b5f7d2714f47b739 schema:name Springer Nature - SN SciGraph project
208 rdf:type schema:Organization
209 Nfc2e92ca316f4e2283bd3cbacd89369e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Electrocardiography
211 rdf:type schema:DefinedTerm
212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
213 schema:name Medical and Health Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
216 schema:name Cardiorespiratory Medicine and Haematology
217 rdf:type schema:DefinedTerm
218 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
219 schema:name Clinical Sciences
220 rdf:type schema:DefinedTerm
221 sg:journal.1025429 schema:issn 1569-5794
222 1573-0743
223 schema:name The International Journal of Cardiovascular Imaging
224 schema:publisher Springer Nature
225 rdf:type schema:Periodical
226 sg:person.01060634467.02 schema:affiliation grid-institutes:grid.413411.2
227 schema:familyName Nanasato
228 schema:givenName Mamoru
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060634467.02
230 rdf:type schema:Person
231 sg:person.01206070466.49 schema:affiliation grid-institutes:grid.412002.5
232 schema:familyName Matsuo
233 schema:givenName Shinro
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206070466.49
235 rdf:type schema:Person
236 sg:person.01371365606.00 schema:affiliation grid-institutes:grid.272458.e
237 schema:familyName Nishimura
238 schema:givenName Tsunehiko
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371365606.00
240 rdf:type schema:Person
241 sg:person.014366212412.16 schema:affiliation grid-institutes:grid.9707.9
242 schema:familyName Nakajima
243 schema:givenName Kenichi
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16
245 rdf:type schema:Person
246 sg:person.016665110142.28 schema:affiliation grid-institutes:grid.412377.4
247 schema:familyName Nishimura
248 schema:givenName Shigeyuki
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665110142.28
250 rdf:type schema:Person
251 sg:pub.10.1007/s00259-005-1916-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047719218
252 https://doi.org/10.1007/s00259-005-1916-7
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/s00259-015-3197-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023217813
255 https://doi.org/10.1007/s00259-015-3197-0
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/s12149-009-0337-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011497547
258 https://doi.org/10.1007/s12149-009-0337-2
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/s12350-017-0880-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085054646
261 https://doi.org/10.1007/s12350-017-0880-5
262 rdf:type schema:CreativeWork
263 grid-institutes:grid.272458.e schema:alternateName Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawara-machi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan
264 schema:name Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawara-machi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan
265 rdf:type schema:Organization
266 grid-institutes:grid.412002.5 schema:alternateName Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
267 schema:name Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
268 rdf:type schema:Organization
269 grid-institutes:grid.412377.4 schema:alternateName Saitama Medical University International Medical Center, Hidaka, Japan
270 schema:name Saitama Medical University International Medical Center, Hidaka, Japan
271 rdf:type schema:Organization
272 grid-institutes:grid.413411.2 schema:alternateName Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
273 schema:name Cardiovascular Center, Nagoya Daini Red Cross Hospital, Nagoya, Japan
274 Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
275 rdf:type schema:Organization
276 grid-institutes:grid.9707.9 schema:alternateName Departments of Nuclear Medicine/Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan
277 schema:name Departments of Nuclear Medicine/Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan
278 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...