Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-08-12

AUTHORS

Zhen Zhang, Qiaozhi Ma, Lizhen Cao, Zhiwei Zhao, Jun Zhao, Qing Lu, Linan Zeng, Mingzhu Zhang, Gerald M. Pohost, Kuncheng Li

ABSTRACT

This study was aimed to investigate the correlation between left ventricular (LV) myocardial strain and LV geometry in healthy adults using cardiovascular magnetic resonance-feature tracking (CMR-FT). 124 gender-matched healthy adults who underwent healthy checkup using CMR cine imaging were retrospectively analyzed. Peak global radial, circumferential, longitudinal strain (GRS, GCS and GLS) for left ventricle were measured. LV geometry was assessed by the ratio of LV mass (LVM) and end-diastolic volume (EDV). GRS, GCS and GLS were 34.18 ± 6.71%, − 22.17 ± 2.28%, − 14.76 ± 2.39% for men, and 33.40 ± 6.95%, − 22.49 ± 2.27%, − 15.72 ± 2.36% for women. Multiple linear regression showed that LVM/EDV was associated with decreased GLS (β = − 0.297, p = 0.005), but was not significantly associated with GRS and GCS (both p > 0.05). There was an increase in the magnitude of GRS, GCS and GLS with advancing age (β = 0.254, β = 0.466 and β = 0.313, all p < 0.05). Greater BMI was associated with decreased GRS, GCS and GLS (β = − 0.232, β = − 0. 249 and β = − 0.279, all p < 0.05). In conclusion, compared with GRS and GCS, GLS is more sensitive to assess LV concentric remodeling in healthy adults. GRS, GCS and GLS are all independently positively associated with age and negatively associated with BMI. Sex-based LV strain reference values for healthy Chinese adults are established. More... »

PAGES

2057-2065

References to SciGraph publications

  • 2017-11-27. Reference ranges for three-dimensional feature tracking cardiac magnetic resonance: comparison with two-dimensional methodology and relevance of age and gender in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2016-11-01. Role of 2D speckle tracking echocardiography in predicting acute coronary occlusion in patients with non ST-segment elevation myocardial infarction in THE EGYPTIAN HEART JOURNAL
  • 2016-05-11. Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2017-08-23. Cardiovascular magnetic resonance feature tracking in small animals – a preliminary study on reproducibility and sample size calculation in BMC MEDICAL IMAGING
  • 2016-12-05. Quantification of myocardial deformation in children by cardiovascular magnetic resonance feature tracking: determination of reference values for left ventricular strain and strain rate in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2014-05-08. Myocardial remodeling in hypertension in JOURNAL OF HUMAN HYPERTENSION
  • 2012-09-29. Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semi-automatic threshold-based segmentation algorithm in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2017-07-06. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3

    DOI

    http://dx.doi.org/10.1007/s10554-019-01644-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1120290325

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31402413


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Age Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Mass Index", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cross-Sectional Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Healthy Volunteers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Ventricles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Longitudinal Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging, Cine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Contraction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sex Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Function, Left", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Remodeling", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Zhen", 
            "id": "sg:person.016612600071.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612600071.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Magnetic Resonance, the Third Medical Centre, Chinese People\u2019s Liberation Army General Hospital, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.414252.4", 
              "name": [
                "Department of Magnetic Resonance, the Third Medical Centre, Chinese People\u2019s Liberation Army General Hospital, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Qiaozhi", 
            "id": "sg:person.013006716773.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006716773.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Lizhen", 
            "id": "sg:person.01037613456.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037613456.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhiwei", 
            "id": "sg:person.016712577041.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016712577041.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Jun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Qing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeng", 
            "givenName": "Linan", 
            "id": "sg:person.013055032173.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055032173.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Mingzhu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Keck School of Medicine, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
                "Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pohost", 
            "givenName": "Gerald M.", 
            "id": "sg:person.0634323545.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634323545.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China", 
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Kuncheng", 
            "id": "sg:person.01326527402.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/jhh.2014.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023994752", 
              "https://doi.org/10.1038/jhh.2014.36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-016-0310-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053891669", 
              "https://doi.org/10.1186/s12968-016-0310-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-017-1199-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090368309", 
              "https://doi.org/10.1007/s10554-017-1199-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-017-1277-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093029505", 
              "https://doi.org/10.1007/s10554-017-1277-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.ehj.2016.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034211940", 
              "https://doi.org/10.1016/j.ehj.2016.10.005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12880-017-0223-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091306956", 
              "https://doi.org/10.1186/s12880-017-0223-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-012-0130-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018301273", 
              "https://doi.org/10.1007/s10554-012-0130-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-016-0247-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030775111", 
              "https://doi.org/10.1186/s12968-016-0247-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-08-12", 
        "datePublishedReg": "2019-08-12", 
        "description": "This study was aimed to investigate the correlation between left ventricular (LV) myocardial strain and LV geometry in healthy adults using cardiovascular magnetic resonance-feature tracking (CMR-FT). 124 gender-matched healthy adults who underwent healthy checkup using CMR cine imaging were retrospectively analyzed. Peak global radial, circumferential, longitudinal strain (GRS, GCS and GLS) for left ventricle were measured. LV geometry was assessed by the ratio of LV mass (LVM) and end-diastolic volume (EDV). GRS, GCS and GLS were 34.18\u2009\u00b1\u20096.71%, \u2212\u200922.17\u2009\u00b1\u20092.28%, \u2212\u200914.76\u2009\u00b1\u20092.39% for men, and 33.40\u2009\u00b1\u20096.95%, \u2212\u200922.49\u2009\u00b1\u20092.27%, \u2212\u200915.72\u2009\u00b1\u20092.36% for women. Multiple linear regression showed that LVM/EDV was associated with decreased GLS (\u03b2\u2009=\u2009\u2212\u20090.297, p\u2009=\u20090.005), but was not significantly associated with GRS and GCS (both p\u2009>\u20090.05). There was an increase in the magnitude of GRS, GCS and GLS with advancing age\u00a0(\u03b2\u2009=\u20090.254, \u03b2\u2009=\u20090.466 and \u03b2\u2009=\u20090.313, all p\u2009<\u20090.05). Greater BMI was associated with decreased GRS, GCS and GLS (\u03b2\u2009=\u2009\u2212\u20090.232, \u03b2\u2009=\u2009\u2212\u20090. 249 and \u03b2\u2009=\u2009\u2212\u20090.279, all p\u2009<\u20090.05). In conclusion, compared with GRS and GCS, GLS is more sensitive to assess LV concentric remodeling in healthy adults. GRS, GCS and GLS are all independently positively associated with age and negatively associated with BMI. Sex-based LV strain reference values for healthy Chinese adults are\u00a0established.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10554-019-01644-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1025429", 
            "issn": [
              "1569-5794", 
              "1573-0743"
            ], 
            "name": "The International Journal of Cardiovascular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "end-diastolic volume", 
          "cardiovascular magnetic resonance feature tracking", 
          "ventricular myocardial strain", 
          "healthy adults", 
          "LV mass", 
          "LV geometry", 
          "myocardial strain", 
          "gender-matched healthy adults", 
          "LV concentric remodeling", 
          "magnetic resonance feature tracking", 
          "left ventricular myocardial strain", 
          "healthy Chinese adults", 
          "CMR cine imaging", 
          "global radial", 
          "Greater BMI", 
          "concentric remodeling", 
          "Chinese adults", 
          "ventricular geometry", 
          "left ventricle", 
          "longitudinal strain", 
          "GCS", 
          "adults", 
          "cine imaging", 
          "BMI", 
          "age", 
          "multiple linear regression", 
          "GLS", 
          "linear regression", 
          "checkup", 
          "reference values", 
          "ventricle", 
          "women", 
          "remodeling", 
          "men", 
          "GRS", 
          "study", 
          "strains", 
          "conclusion", 
          "correlation", 
          "imaging", 
          "tracking study", 
          "regression", 
          "increase", 
          "volume", 
          "mass", 
          "ratio", 
          "radial", 
          "values", 
          "magnitude", 
          "tracking", 
          "geometry"
        ], 
        "name": "Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study", 
        "pagination": "2057-2065", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1120290325"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10554-019-01644-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31402413"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10554-019-01644-3", 
          "https://app.dimensions.ai/details/publication/pub.1120290325"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_792.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10554-019-01644-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    287 TRIPLES      21 PREDICATES      102 URIs      86 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10554-019-01644-3 schema:about N0b55675133e44f25b3e252b552204483
    2 N381238c52e8f47f888a5fc7e7b4ff1a2
    3 N43a438836f4241f3b0c22ca04df20bb4
    4 N482c23cbdb5d4639b5885cedaf093d3e
    5 N54b008aad701450d94bcc4dad81040ab
    6 N681769d0d36d45c98a1e84171f3825f1
    7 N6ebf6c4c0a8443c7bddfb353239f96c4
    8 N7690aed25b604686a36db3c91a10fc65
    9 N87871c666a7a4f419f0138645654fe33
    10 N92fa32e7c0c74ac8aa884be905e260e9
    11 Na6a666ce7b56463393dc48d45e19164a
    12 Nbbe97cbe2cd3460eb72447a9d8fc8706
    13 Nc65b9bf0f27e4d46b1c1363830f752d9
    14 Nc6c42e5990df4068a786178fff6708ae
    15 Neca095efff974dcbb95de00573cac702
    16 Ned95bd8d31014adcb3957b2e27f2824e
    17 Nee8ad9b3d1cc44b3b7371748c2af4b7c
    18 Nf93b51c028c94108aa60589a20978f5f
    19 anzsrc-for:11
    20 anzsrc-for:1102
    21 schema:author Nd532d6e2c0d2480eb71e122309e367e9
    22 schema:citation sg:pub.10.1007/s10554-012-0130-5
    23 sg:pub.10.1007/s10554-017-1199-7
    24 sg:pub.10.1007/s10554-017-1277-x
    25 sg:pub.10.1016/j.ehj.2016.10.005
    26 sg:pub.10.1038/jhh.2014.36
    27 sg:pub.10.1186/s12880-017-0223-7
    28 sg:pub.10.1186/s12968-016-0247-0
    29 sg:pub.10.1186/s12968-016-0310-x
    30 schema:datePublished 2019-08-12
    31 schema:datePublishedReg 2019-08-12
    32 schema:description This study was aimed to investigate the correlation between left ventricular (LV) myocardial strain and LV geometry in healthy adults using cardiovascular magnetic resonance-feature tracking (CMR-FT). 124 gender-matched healthy adults who underwent healthy checkup using CMR cine imaging were retrospectively analyzed. Peak global radial, circumferential, longitudinal strain (GRS, GCS and GLS) for left ventricle were measured. LV geometry was assessed by the ratio of LV mass (LVM) and end-diastolic volume (EDV). GRS, GCS and GLS were 34.18 ± 6.71%, − 22.17 ± 2.28%, − 14.76 ± 2.39% for men, and 33.40 ± 6.95%, − 22.49 ± 2.27%, − 15.72 ± 2.36% for women. Multiple linear regression showed that LVM/EDV was associated with decreased GLS (β = − 0.297, p = 0.005), but was not significantly associated with GRS and GCS (both p > 0.05). There was an increase in the magnitude of GRS, GCS and GLS with advancing age (β = 0.254, β = 0.466 and β = 0.313, all p < 0.05). Greater BMI was associated with decreased GRS, GCS and GLS (β = − 0.232, β = − 0. 249 and β = − 0.279, all p < 0.05). In conclusion, compared with GRS and GCS, GLS is more sensitive to assess LV concentric remodeling in healthy adults. GRS, GCS and GLS are all independently positively associated with age and negatively associated with BMI. Sex-based LV strain reference values for healthy Chinese adults are established.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N04d5dc37ddf54be2a0c6623e09d14ee9
    36 N4fbc73d1a5b24f1cb9b64cd6a607369d
    37 sg:journal.1025429
    38 schema:keywords BMI
    39 CMR cine imaging
    40 Chinese adults
    41 GCS
    42 GLS
    43 GRS
    44 Greater BMI
    45 LV concentric remodeling
    46 LV geometry
    47 LV mass
    48 adults
    49 age
    50 cardiovascular magnetic resonance feature tracking
    51 checkup
    52 cine imaging
    53 concentric remodeling
    54 conclusion
    55 correlation
    56 end-diastolic volume
    57 gender-matched healthy adults
    58 geometry
    59 global radial
    60 healthy Chinese adults
    61 healthy adults
    62 imaging
    63 increase
    64 left ventricle
    65 left ventricular myocardial strain
    66 linear regression
    67 longitudinal strain
    68 magnetic resonance feature tracking
    69 magnitude
    70 mass
    71 men
    72 multiple linear regression
    73 myocardial strain
    74 radial
    75 ratio
    76 reference values
    77 regression
    78 remodeling
    79 strains
    80 study
    81 tracking
    82 tracking study
    83 values
    84 ventricle
    85 ventricular geometry
    86 ventricular myocardial strain
    87 volume
    88 women
    89 schema:name Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study
    90 schema:pagination 2057-2065
    91 schema:productId N0f861f78743645c89a591138896fbff4
    92 Nf8f32ac6fe1e4c30ad0764f91ea5d23d
    93 Nfcd4b280f22541c291bae0edced85c27
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120290325
    95 https://doi.org/10.1007/s10554-019-01644-3
    96 schema:sdDatePublished 2022-11-24T21:03
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher Nd54b99206f7d43f0a6da25ddf070f4f0
    99 schema:url https://doi.org/10.1007/s10554-019-01644-3
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N04d5dc37ddf54be2a0c6623e09d14ee9 schema:volumeNumber 35
    104 rdf:type schema:PublicationVolume
    105 N05daced487b645da983c417dc593a874 rdf:first sg:person.016712577041.56
    106 rdf:rest Na7b32666fe6c463f98ab1f60fbb68380
    107 N0b55675133e44f25b3e252b552204483 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Healthy Volunteers
    109 rdf:type schema:DefinedTerm
    110 N0f861f78743645c89a591138896fbff4 schema:name doi
    111 schema:value 10.1007/s10554-019-01644-3
    112 rdf:type schema:PropertyValue
    113 N1d9763a226114d6fbae1549effbe3c22 schema:affiliation grid-institutes:None
    114 schema:familyName Zhang
    115 schema:givenName Mingzhu
    116 rdf:type schema:Person
    117 N381238c52e8f47f888a5fc7e7b4ff1a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Female
    119 rdf:type schema:DefinedTerm
    120 N43a438836f4241f3b0c22ca04df20bb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Middle Aged
    122 rdf:type schema:DefinedTerm
    123 N482c23cbdb5d4639b5885cedaf093d3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Cross-Sectional Studies
    125 rdf:type schema:DefinedTerm
    126 N4fbc73d1a5b24f1cb9b64cd6a607369d schema:issueNumber 11
    127 rdf:type schema:PublicationIssue
    128 N54b008aad701450d94bcc4dad81040ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Heart Ventricles
    130 rdf:type schema:DefinedTerm
    131 N5917075c06d94e6faf6fddccb6398f1f rdf:first sg:person.01326527402.59
    132 rdf:rest rdf:nil
    133 N65c83fb6dce4482f93cbab854ab2ad3c rdf:first sg:person.013006716773.32
    134 rdf:rest N8dbb10ab66244f25af4f46654d45d3d0
    135 N681769d0d36d45c98a1e84171f3825f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Longitudinal Studies
    137 rdf:type schema:DefinedTerm
    138 N6ebf6c4c0a8443c7bddfb353239f96c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Adult
    140 rdf:type schema:DefinedTerm
    141 N7690aed25b604686a36db3c91a10fc65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Sex Factors
    143 rdf:type schema:DefinedTerm
    144 N87871c666a7a4f419f0138645654fe33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Magnetic Resonance Imaging, Cine
    146 rdf:type schema:DefinedTerm
    147 N8dbb10ab66244f25af4f46654d45d3d0 rdf:first sg:person.01037613456.31
    148 rdf:rest N05daced487b645da983c417dc593a874
    149 N92fa32e7c0c74ac8aa884be905e260e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Humans
    151 rdf:type schema:DefinedTerm
    152 N93459475a6e84755b69590829151a885 schema:affiliation grid-institutes:None
    153 schema:familyName Zhao
    154 schema:givenName Jun
    155 rdf:type schema:Person
    156 Na6a666ce7b56463393dc48d45e19164a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Myocardial Contraction
    158 rdf:type schema:DefinedTerm
    159 Na7b32666fe6c463f98ab1f60fbb68380 rdf:first N93459475a6e84755b69590829151a885
    160 rdf:rest Nde9a87ebc5904b81a61cb0b218db2ee2
    161 Nbbe97cbe2cd3460eb72447a9d8fc8706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Male
    163 rdf:type schema:DefinedTerm
    164 Nc65b9bf0f27e4d46b1c1363830f752d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Retrospective Studies
    166 rdf:type schema:DefinedTerm
    167 Nc6c42e5990df4068a786178fff6708ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Ventricular Function, Left
    169 rdf:type schema:DefinedTerm
    170 Ncb6be191a4f246fdb774e978a635e544 rdf:first N1d9763a226114d6fbae1549effbe3c22
    171 rdf:rest Nd7cb7e32e52f4bbf869113e189de8694
    172 Nd532d6e2c0d2480eb71e122309e367e9 rdf:first sg:person.016612600071.00
    173 rdf:rest N65c83fb6dce4482f93cbab854ab2ad3c
    174 Nd54b99206f7d43f0a6da25ddf070f4f0 schema:name Springer Nature - SN SciGraph project
    175 rdf:type schema:Organization
    176 Nd7cb7e32e52f4bbf869113e189de8694 rdf:first sg:person.0634323545.17
    177 rdf:rest N5917075c06d94e6faf6fddccb6398f1f
    178 Nde9a87ebc5904b81a61cb0b218db2ee2 rdf:first Nfb7fd098ea904fad8434541b702d0a64
    179 rdf:rest Neb902c0d1eda44288ac0ca3002e540c0
    180 Neb902c0d1eda44288ac0ca3002e540c0 rdf:first sg:person.013055032173.52
    181 rdf:rest Ncb6be191a4f246fdb774e978a635e544
    182 Neca095efff974dcbb95de00573cac702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Age Factors
    184 rdf:type schema:DefinedTerm
    185 Ned95bd8d31014adcb3957b2e27f2824e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Predictive Value of Tests
    187 rdf:type schema:DefinedTerm
    188 Nee8ad9b3d1cc44b3b7371748c2af4b7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Ventricular Remodeling
    190 rdf:type schema:DefinedTerm
    191 Nf8f32ac6fe1e4c30ad0764f91ea5d23d schema:name dimensions_id
    192 schema:value pub.1120290325
    193 rdf:type schema:PropertyValue
    194 Nf93b51c028c94108aa60589a20978f5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Body Mass Index
    196 rdf:type schema:DefinedTerm
    197 Nfb7fd098ea904fad8434541b702d0a64 schema:affiliation grid-institutes:None
    198 schema:familyName Lu
    199 schema:givenName Qing
    200 rdf:type schema:Person
    201 Nfcd4b280f22541c291bae0edced85c27 schema:name pubmed_id
    202 schema:value 31402413
    203 rdf:type schema:PropertyValue
    204 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Medical and Health Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Cardiorespiratory Medicine and Haematology
    209 rdf:type schema:DefinedTerm
    210 sg:journal.1025429 schema:issn 1569-5794
    211 1573-0743
    212 schema:name The International Journal of Cardiovascular Imaging
    213 schema:publisher Springer Nature
    214 rdf:type schema:Periodical
    215 sg:person.01037613456.31 schema:affiliation grid-institutes:grid.24696.3f
    216 schema:familyName Cao
    217 schema:givenName Lizhen
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037613456.31
    219 rdf:type schema:Person
    220 sg:person.013006716773.32 schema:affiliation grid-institutes:grid.414252.4
    221 schema:familyName Ma
    222 schema:givenName Qiaozhi
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006716773.32
    224 rdf:type schema:Person
    225 sg:person.013055032173.52 schema:affiliation grid-institutes:None
    226 schema:familyName Zeng
    227 schema:givenName Linan
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055032173.52
    229 rdf:type schema:Person
    230 sg:person.01326527402.59 schema:affiliation grid-institutes:None
    231 schema:familyName Li
    232 schema:givenName Kuncheng
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
    234 rdf:type schema:Person
    235 sg:person.016612600071.00 schema:affiliation grid-institutes:grid.24696.3f
    236 schema:familyName Zhang
    237 schema:givenName Zhen
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612600071.00
    239 rdf:type schema:Person
    240 sg:person.016712577041.56 schema:affiliation grid-institutes:None
    241 schema:familyName Zhao
    242 schema:givenName Zhiwei
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016712577041.56
    244 rdf:type schema:Person
    245 sg:person.0634323545.17 schema:affiliation grid-institutes:grid.42505.36
    246 schema:familyName Pohost
    247 schema:givenName Gerald M.
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634323545.17
    249 rdf:type schema:Person
    250 sg:pub.10.1007/s10554-012-0130-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018301273
    251 https://doi.org/10.1007/s10554-012-0130-5
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s10554-017-1199-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090368309
    254 https://doi.org/10.1007/s10554-017-1199-7
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s10554-017-1277-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1093029505
    257 https://doi.org/10.1007/s10554-017-1277-x
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1016/j.ehj.2016.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034211940
    260 https://doi.org/10.1016/j.ehj.2016.10.005
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/jhh.2014.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023994752
    263 https://doi.org/10.1038/jhh.2014.36
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/s12880-017-0223-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091306956
    266 https://doi.org/10.1186/s12880-017-0223-7
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/s12968-016-0247-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775111
    269 https://doi.org/10.1186/s12968-016-0247-0
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/s12968-016-0310-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053891669
    272 https://doi.org/10.1186/s12968-016-0310-x
    273 rdf:type schema:CreativeWork
    274 grid-institutes:None schema:alternateName Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China
    275 schema:name Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China
    276 Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China
    277 rdf:type schema:Organization
    278 grid-institutes:grid.24696.3f schema:alternateName Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China
    279 schema:name Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China
    280 rdf:type schema:Organization
    281 grid-institutes:grid.414252.4 schema:alternateName Department of Magnetic Resonance, the Third Medical Centre, Chinese People’s Liberation Army General Hospital, Beijing, China
    282 schema:name Department of Magnetic Resonance, the Third Medical Centre, Chinese People’s Liberation Army General Hospital, Beijing, China
    283 rdf:type schema:Organization
    284 grid-institutes:grid.42505.36 schema:alternateName Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
    285 schema:name Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
    286 Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China
    287 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...