Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-08-12

AUTHORS

Zhen Zhang, Qiaozhi Ma, Lizhen Cao, Zhiwei Zhao, Jun Zhao, Qing Lu, Linan Zeng, Mingzhu Zhang, Gerald M. Pohost, Kuncheng Li

ABSTRACT

This study was aimed to investigate the correlation between left ventricular (LV) myocardial strain and LV geometry in healthy adults using cardiovascular magnetic resonance-feature tracking (CMR-FT). 124 gender-matched healthy adults who underwent healthy checkup using CMR cine imaging were retrospectively analyzed. Peak global radial, circumferential, longitudinal strain (GRS, GCS and GLS) for left ventricle were measured. LV geometry was assessed by the ratio of LV mass (LVM) and end-diastolic volume (EDV). GRS, GCS and GLS were 34.18 ± 6.71%, − 22.17 ± 2.28%, − 14.76 ± 2.39% for men, and 33.40 ± 6.95%, − 22.49 ± 2.27%, − 15.72 ± 2.36% for women. Multiple linear regression showed that LVM/EDV was associated with decreased GLS (β = − 0.297, p = 0.005), but was not significantly associated with GRS and GCS (both p > 0.05). There was an increase in the magnitude of GRS, GCS and GLS with advancing age (β = 0.254, β = 0.466 and β = 0.313, all p < 0.05). Greater BMI was associated with decreased GRS, GCS and GLS (β = − 0.232, β = − 0. 249 and β = − 0.279, all p < 0.05). In conclusion, compared with GRS and GCS, GLS is more sensitive to assess LV concentric remodeling in healthy adults. GRS, GCS and GLS are all independently positively associated with age and negatively associated with BMI. Sex-based LV strain reference values for healthy Chinese adults are established. More... »

PAGES

2057-2065

References to SciGraph publications

  • 2017-11-27. Reference ranges for three-dimensional feature tracking cardiac magnetic resonance: comparison with two-dimensional methodology and relevance of age and gender in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2016-11-01. Role of 2D speckle tracking echocardiography in predicting acute coronary occlusion in patients with non ST-segment elevation myocardial infarction in THE EGYPTIAN HEART JOURNAL
  • 2016-05-11. Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2017-08-23. Cardiovascular magnetic resonance feature tracking in small animals – a preliminary study on reproducibility and sample size calculation in BMC MEDICAL IMAGING
  • 2016-12-05. Quantification of myocardial deformation in children by cardiovascular magnetic resonance feature tracking: determination of reference values for left ventricular strain and strain rate in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2014-05-08. Myocardial remodeling in hypertension in JOURNAL OF HUMAN HYPERTENSION
  • 2012-09-29. Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semi-automatic threshold-based segmentation algorithm in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2017-07-06. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3

    DOI

    http://dx.doi.org/10.1007/s10554-019-01644-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1120290325

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31402413


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Age Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Mass Index", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cross-Sectional Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Healthy Volunteers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Ventricles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Longitudinal Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging, Cine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Contraction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sex Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Function, Left", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Remodeling", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Zhen", 
            "id": "sg:person.016612600071.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612600071.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Magnetic Resonance, the Third Medical Centre, Chinese People\u2019s Liberation Army General Hospital, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.414252.4", 
              "name": [
                "Department of Magnetic Resonance, the Third Medical Centre, Chinese People\u2019s Liberation Army General Hospital, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Qiaozhi", 
            "id": "sg:person.013006716773.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006716773.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Lizhen", 
            "id": "sg:person.01037613456.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037613456.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhiwei", 
            "id": "sg:person.016712577041.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016712577041.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Jun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Qing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeng", 
            "givenName": "Linan", 
            "id": "sg:person.013055032173.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055032173.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Mingzhu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Keck School of Medicine, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
                "Keck School of Medicine, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pohost", 
            "givenName": "Gerald M.", 
            "id": "sg:person.0634323545.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634323545.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China", 
                "Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Kuncheng", 
            "id": "sg:person.01326527402.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1016/j.ehj.2016.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034211940", 
              "https://doi.org/10.1016/j.ehj.2016.10.005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/jhh.2014.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023994752", 
              "https://doi.org/10.1038/jhh.2014.36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-012-0130-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018301273", 
              "https://doi.org/10.1007/s10554-012-0130-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-016-0247-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030775111", 
              "https://doi.org/10.1186/s12968-016-0247-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-017-1199-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090368309", 
              "https://doi.org/10.1007/s10554-017-1199-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12880-017-0223-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091306956", 
              "https://doi.org/10.1186/s12880-017-0223-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-016-0310-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053891669", 
              "https://doi.org/10.1186/s12968-016-0310-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-017-1277-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093029505", 
              "https://doi.org/10.1007/s10554-017-1277-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-08-12", 
        "datePublishedReg": "2019-08-12", 
        "description": "This study was aimed to investigate the correlation between left ventricular (LV) myocardial strain and LV geometry in healthy adults using cardiovascular magnetic resonance-feature tracking (CMR-FT). 124 gender-matched healthy adults who underwent healthy checkup using CMR cine imaging were retrospectively analyzed. Peak global radial, circumferential, longitudinal strain (GRS, GCS and GLS) for left ventricle were measured. LV geometry was assessed by the ratio of LV mass (LVM) and end-diastolic volume (EDV). GRS, GCS and GLS were 34.18\u2009\u00b1\u20096.71%, \u2212\u200922.17\u2009\u00b1\u20092.28%, \u2212\u200914.76\u2009\u00b1\u20092.39% for men, and 33.40\u2009\u00b1\u20096.95%, \u2212\u200922.49\u2009\u00b1\u20092.27%, \u2212\u200915.72\u2009\u00b1\u20092.36% for women. Multiple linear regression showed that LVM/EDV was associated with decreased GLS (\u03b2\u2009=\u2009\u2212\u20090.297, p\u2009=\u20090.005), but was not significantly associated with GRS and GCS (both p\u2009>\u20090.05). There was an increase in the magnitude of GRS, GCS and GLS with advancing age\u00a0(\u03b2\u2009=\u20090.254, \u03b2\u2009=\u20090.466 and \u03b2\u2009=\u20090.313, all p\u2009<\u20090.05). Greater BMI was associated with decreased GRS, GCS and GLS (\u03b2\u2009=\u2009\u2212\u20090.232, \u03b2\u2009=\u2009\u2212\u20090. 249 and \u03b2\u2009=\u2009\u2212\u20090.279, all p\u2009<\u20090.05). In conclusion, compared with GRS and GCS, GLS is more sensitive to assess LV concentric remodeling in healthy adults. GRS, GCS and GLS are all independently positively associated with age and negatively associated with BMI. Sex-based LV strain reference values for healthy Chinese adults are\u00a0established.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10554-019-01644-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1025429", 
            "issn": [
              "1569-5794", 
              "1573-0743"
            ], 
            "name": "The International Journal of Cardiovascular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "end-diastolic volume", 
          "cardiovascular magnetic resonance feature tracking", 
          "ventricular myocardial strain", 
          "healthy adults", 
          "LV mass", 
          "LV geometry", 
          "myocardial strain", 
          "gender-matched healthy adults", 
          "LV concentric remodeling", 
          "magnetic resonance feature tracking", 
          "left ventricular myocardial strain", 
          "healthy Chinese adults", 
          "CMR cine imaging", 
          "global radial", 
          "Greater BMI", 
          "concentric remodeling", 
          "Chinese adults", 
          "ventricular geometry", 
          "left ventricle", 
          "longitudinal strain", 
          "GCS", 
          "adults", 
          "cine imaging", 
          "BMI", 
          "age", 
          "multiple linear regression", 
          "GLS", 
          "linear regression", 
          "checkup", 
          "reference values", 
          "ventricle", 
          "women", 
          "remodeling", 
          "men", 
          "GRS", 
          "study", 
          "strains", 
          "conclusion", 
          "correlation", 
          "imaging", 
          "tracking study", 
          "regression", 
          "increase", 
          "volume", 
          "mass", 
          "ratio", 
          "radial", 
          "values", 
          "magnitude", 
          "tracking", 
          "geometry"
        ], 
        "name": "Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study", 
        "pagination": "2057-2065", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1120290325"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10554-019-01644-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31402413"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10554-019-01644-3", 
          "https://app.dimensions.ai/details/publication/pub.1120290325"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_822.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10554-019-01644-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-019-01644-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    287 TRIPLES      21 PREDICATES      102 URIs      86 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10554-019-01644-3 schema:about N0718e7a809e5455a8375fd72e31f250d
    2 N0e856b6372df4e07b38d5f3a4e343f1d
    3 N1d31f9918b5c459dbc2167be468a0b01
    4 N3bc02a3efd4842c0b6e6344326283e6f
    5 N44eaed2ce78d41b98f88afb07bf6cdd5
    6 N4bb42f1ea5e245c8bd3dc4641c59d106
    7 N78f0c83fcb9648458d9e12572bdccb32
    8 N7a63861b586d407db18b117a45c8071f
    9 N7d5e3eb88b7a4ed4addbcfb87febbd36
    10 Na7d97eb5f0494a5bac527ef879c90923
    11 Nbba24dbb33664bc5b8b65dd555466180
    12 Nbe9f57fa810848d4b5a847fe40dd2d49
    13 Nd2ee73b3bf1446f89c93bfeae48041cb
    14 Ne4ce242c3c2c4e6c8ba281a58fbe3394
    15 Neccbd139ad874de78de5ff77637a0238
    16 Nf00e57464ad5443aaeded687c3c72841
    17 Nfca810d0476f45f0a4c10a45f3eda1a2
    18 Nfcdc1c5b78e54104a832ae6d4fcefe07
    19 anzsrc-for:11
    20 anzsrc-for:1102
    21 schema:author Ne5c3b3722b764f5c811a245ffbee4e25
    22 schema:citation sg:pub.10.1007/s10554-012-0130-5
    23 sg:pub.10.1007/s10554-017-1199-7
    24 sg:pub.10.1007/s10554-017-1277-x
    25 sg:pub.10.1016/j.ehj.2016.10.005
    26 sg:pub.10.1038/jhh.2014.36
    27 sg:pub.10.1186/s12880-017-0223-7
    28 sg:pub.10.1186/s12968-016-0247-0
    29 sg:pub.10.1186/s12968-016-0310-x
    30 schema:datePublished 2019-08-12
    31 schema:datePublishedReg 2019-08-12
    32 schema:description This study was aimed to investigate the correlation between left ventricular (LV) myocardial strain and LV geometry in healthy adults using cardiovascular magnetic resonance-feature tracking (CMR-FT). 124 gender-matched healthy adults who underwent healthy checkup using CMR cine imaging were retrospectively analyzed. Peak global radial, circumferential, longitudinal strain (GRS, GCS and GLS) for left ventricle were measured. LV geometry was assessed by the ratio of LV mass (LVM) and end-diastolic volume (EDV). GRS, GCS and GLS were 34.18 ± 6.71%, − 22.17 ± 2.28%, − 14.76 ± 2.39% for men, and 33.40 ± 6.95%, − 22.49 ± 2.27%, − 15.72 ± 2.36% for women. Multiple linear regression showed that LVM/EDV was associated with decreased GLS (β = − 0.297, p = 0.005), but was not significantly associated with GRS and GCS (both p > 0.05). There was an increase in the magnitude of GRS, GCS and GLS with advancing age (β = 0.254, β = 0.466 and β = 0.313, all p < 0.05). Greater BMI was associated with decreased GRS, GCS and GLS (β = − 0.232, β = − 0. 249 and β = − 0.279, all p < 0.05). In conclusion, compared with GRS and GCS, GLS is more sensitive to assess LV concentric remodeling in healthy adults. GRS, GCS and GLS are all independently positively associated with age and negatively associated with BMI. Sex-based LV strain reference values for healthy Chinese adults are established.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N14618ef76dee429ba933b4352e8b312d
    36 Ncb279bcab10a4104b7bd74fdf70c37aa
    37 sg:journal.1025429
    38 schema:keywords BMI
    39 CMR cine imaging
    40 Chinese adults
    41 GCS
    42 GLS
    43 GRS
    44 Greater BMI
    45 LV concentric remodeling
    46 LV geometry
    47 LV mass
    48 adults
    49 age
    50 cardiovascular magnetic resonance feature tracking
    51 checkup
    52 cine imaging
    53 concentric remodeling
    54 conclusion
    55 correlation
    56 end-diastolic volume
    57 gender-matched healthy adults
    58 geometry
    59 global radial
    60 healthy Chinese adults
    61 healthy adults
    62 imaging
    63 increase
    64 left ventricle
    65 left ventricular myocardial strain
    66 linear regression
    67 longitudinal strain
    68 magnetic resonance feature tracking
    69 magnitude
    70 mass
    71 men
    72 multiple linear regression
    73 myocardial strain
    74 radial
    75 ratio
    76 reference values
    77 regression
    78 remodeling
    79 strains
    80 study
    81 tracking
    82 tracking study
    83 values
    84 ventricle
    85 ventricular geometry
    86 ventricular myocardial strain
    87 volume
    88 women
    89 schema:name Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study
    90 schema:pagination 2057-2065
    91 schema:productId N0c6f1edb8a1e4454b46326defa65ad55
    92 N69018ff58bc949fc8c5419aa21d53d59
    93 N7c8bd892e41f4d499312a1c57ef8bf0b
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120290325
    95 https://doi.org/10.1007/s10554-019-01644-3
    96 schema:sdDatePublished 2022-10-01T06:46
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N092ee5c79d55404e8869721f4039efb7
    99 schema:url https://doi.org/10.1007/s10554-019-01644-3
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N058ffc8cd31a426d94f30591460bd87d rdf:first sg:person.01326527402.59
    104 rdf:rest rdf:nil
    105 N0718e7a809e5455a8375fd72e31f250d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Cross-Sectional Studies
    107 rdf:type schema:DefinedTerm
    108 N092ee5c79d55404e8869721f4039efb7 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N0c6f1edb8a1e4454b46326defa65ad55 schema:name doi
    111 schema:value 10.1007/s10554-019-01644-3
    112 rdf:type schema:PropertyValue
    113 N0e856b6372df4e07b38d5f3a4e343f1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Female
    115 rdf:type schema:DefinedTerm
    116 N14618ef76dee429ba933b4352e8b312d schema:volumeNumber 35
    117 rdf:type schema:PublicationVolume
    118 N1d31f9918b5c459dbc2167be468a0b01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Heart Ventricles
    120 rdf:type schema:DefinedTerm
    121 N2160ba7f856d456c9e20c26f033143b1 rdf:first N23ad6069aef943ea967b64cdb1f17246
    122 rdf:rest Ned3ab59464774baa9948db311f32fb29
    123 N23ad6069aef943ea967b64cdb1f17246 schema:affiliation grid-institutes:None
    124 schema:familyName Lu
    125 schema:givenName Qing
    126 rdf:type schema:Person
    127 N26342ade92e7446cbe4aa685ab619822 schema:affiliation grid-institutes:None
    128 schema:familyName Zhao
    129 schema:givenName Jun
    130 rdf:type schema:Person
    131 N37c790408248449ba7b9a13b4c1f023a schema:affiliation grid-institutes:None
    132 schema:familyName Zhang
    133 schema:givenName Mingzhu
    134 rdf:type schema:Person
    135 N3bc02a3efd4842c0b6e6344326283e6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Longitudinal Studies
    137 rdf:type schema:DefinedTerm
    138 N3d722e699f0b4b9a9387ad0a32a338eb rdf:first sg:person.01037613456.31
    139 rdf:rest N5cdd3c582ca94e40bdf76f83649b77fc
    140 N44eaed2ce78d41b98f88afb07bf6cdd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Body Mass Index
    142 rdf:type schema:DefinedTerm
    143 N4bb42f1ea5e245c8bd3dc4641c59d106 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Ventricular Remodeling
    145 rdf:type schema:DefinedTerm
    146 N5cdd3c582ca94e40bdf76f83649b77fc rdf:first sg:person.016712577041.56
    147 rdf:rest N92de6a281a46487fbb7537e788988259
    148 N6710ff7d239d4599bf7135f99df66e6d rdf:first N37c790408248449ba7b9a13b4c1f023a
    149 rdf:rest Ned0acb1d1f67488dbf8b46e05908d8b5
    150 N69018ff58bc949fc8c5419aa21d53d59 schema:name dimensions_id
    151 schema:value pub.1120290325
    152 rdf:type schema:PropertyValue
    153 N78f0c83fcb9648458d9e12572bdccb32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Ventricular Function, Left
    155 rdf:type schema:DefinedTerm
    156 N7a63861b586d407db18b117a45c8071f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Middle Aged
    158 rdf:type schema:DefinedTerm
    159 N7c8bd892e41f4d499312a1c57ef8bf0b schema:name pubmed_id
    160 schema:value 31402413
    161 rdf:type schema:PropertyValue
    162 N7d5e3eb88b7a4ed4addbcfb87febbd36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Sex Factors
    164 rdf:type schema:DefinedTerm
    165 N88126fd472974dc497c2812eb4720195 rdf:first sg:person.013006716773.32
    166 rdf:rest N3d722e699f0b4b9a9387ad0a32a338eb
    167 N92de6a281a46487fbb7537e788988259 rdf:first N26342ade92e7446cbe4aa685ab619822
    168 rdf:rest N2160ba7f856d456c9e20c26f033143b1
    169 Na7d97eb5f0494a5bac527ef879c90923 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Retrospective Studies
    171 rdf:type schema:DefinedTerm
    172 Nbba24dbb33664bc5b8b65dd555466180 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Adult
    174 rdf:type schema:DefinedTerm
    175 Nbe9f57fa810848d4b5a847fe40dd2d49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Male
    177 rdf:type schema:DefinedTerm
    178 Ncb279bcab10a4104b7bd74fdf70c37aa schema:issueNumber 11
    179 rdf:type schema:PublicationIssue
    180 Nd2ee73b3bf1446f89c93bfeae48041cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Humans
    182 rdf:type schema:DefinedTerm
    183 Ne4ce242c3c2c4e6c8ba281a58fbe3394 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Predictive Value of Tests
    185 rdf:type schema:DefinedTerm
    186 Ne5c3b3722b764f5c811a245ffbee4e25 rdf:first sg:person.016612600071.00
    187 rdf:rest N88126fd472974dc497c2812eb4720195
    188 Neccbd139ad874de78de5ff77637a0238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Magnetic Resonance Imaging, Cine
    190 rdf:type schema:DefinedTerm
    191 Ned0acb1d1f67488dbf8b46e05908d8b5 rdf:first sg:person.0634323545.17
    192 rdf:rest N058ffc8cd31a426d94f30591460bd87d
    193 Ned3ab59464774baa9948db311f32fb29 rdf:first sg:person.013055032173.52
    194 rdf:rest N6710ff7d239d4599bf7135f99df66e6d
    195 Nf00e57464ad5443aaeded687c3c72841 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Myocardial Contraction
    197 rdf:type schema:DefinedTerm
    198 Nfca810d0476f45f0a4c10a45f3eda1a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Age Factors
    200 rdf:type schema:DefinedTerm
    201 Nfcdc1c5b78e54104a832ae6d4fcefe07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Healthy Volunteers
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Medical and Health Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Cardiorespiratory Medicine and Haematology
    209 rdf:type schema:DefinedTerm
    210 sg:journal.1025429 schema:issn 1569-5794
    211 1573-0743
    212 schema:name The International Journal of Cardiovascular Imaging
    213 schema:publisher Springer Nature
    214 rdf:type schema:Periodical
    215 sg:person.01037613456.31 schema:affiliation grid-institutes:grid.24696.3f
    216 schema:familyName Cao
    217 schema:givenName Lizhen
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037613456.31
    219 rdf:type schema:Person
    220 sg:person.013006716773.32 schema:affiliation grid-institutes:grid.414252.4
    221 schema:familyName Ma
    222 schema:givenName Qiaozhi
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006716773.32
    224 rdf:type schema:Person
    225 sg:person.013055032173.52 schema:affiliation grid-institutes:None
    226 schema:familyName Zeng
    227 schema:givenName Linan
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055032173.52
    229 rdf:type schema:Person
    230 sg:person.01326527402.59 schema:affiliation grid-institutes:None
    231 schema:familyName Li
    232 schema:givenName Kuncheng
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
    234 rdf:type schema:Person
    235 sg:person.016612600071.00 schema:affiliation grid-institutes:grid.24696.3f
    236 schema:familyName Zhang
    237 schema:givenName Zhen
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612600071.00
    239 rdf:type schema:Person
    240 sg:person.016712577041.56 schema:affiliation grid-institutes:None
    241 schema:familyName Zhao
    242 schema:givenName Zhiwei
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016712577041.56
    244 rdf:type schema:Person
    245 sg:person.0634323545.17 schema:affiliation grid-institutes:grid.42505.36
    246 schema:familyName Pohost
    247 schema:givenName Gerald M.
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634323545.17
    249 rdf:type schema:Person
    250 sg:pub.10.1007/s10554-012-0130-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018301273
    251 https://doi.org/10.1007/s10554-012-0130-5
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s10554-017-1199-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090368309
    254 https://doi.org/10.1007/s10554-017-1199-7
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s10554-017-1277-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1093029505
    257 https://doi.org/10.1007/s10554-017-1277-x
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1016/j.ehj.2016.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034211940
    260 https://doi.org/10.1016/j.ehj.2016.10.005
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/jhh.2014.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023994752
    263 https://doi.org/10.1038/jhh.2014.36
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/s12880-017-0223-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091306956
    266 https://doi.org/10.1186/s12880-017-0223-7
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/s12968-016-0247-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775111
    269 https://doi.org/10.1186/s12968-016-0247-0
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/s12968-016-0310-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053891669
    272 https://doi.org/10.1186/s12968-016-0310-x
    273 rdf:type schema:CreativeWork
    274 grid-institutes:None schema:alternateName Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China
    275 schema:name Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China
    276 Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China
    277 rdf:type schema:Organization
    278 grid-institutes:grid.24696.3f schema:alternateName Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China
    279 schema:name Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, 100053, Beijing, China
    280 rdf:type schema:Organization
    281 grid-institutes:grid.414252.4 schema:alternateName Department of Magnetic Resonance, the Third Medical Centre, Chinese People’s Liberation Army General Hospital, Beijing, China
    282 schema:name Department of Magnetic Resonance, the Third Medical Centre, Chinese People’s Liberation Army General Hospital, Beijing, China
    283 rdf:type schema:Organization
    284 grid-institutes:grid.42505.36 schema:alternateName Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
    285 schema:name Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
    286 Xiamen Zhouxin Medical Imaging Diagnostic Centre, Xiamen, China
    287 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...