Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Amita Singh, Diego Medvedofsky, Anuj Mediratta, Bhavna Balaney, Eric Kruse, Boguslawa Ciszek, Atman P. Shah, John E. Blair, Francesco Maffessanti, Karima Addetia, Victor Mor-Avi, Roberto M. Lang

ABSTRACT

Echocardiographic assessment of left ventricular (LV) filling pressures is performed using a multi-parametric algorithm. Left atrial (LA) strain was recently found to accurately classify the degree of diastolic dysfunction. We hypothesized that LA strain could be used as a stand-alone marker and sought to identify and test a cutoff, which would accurately detect elevated LV pressures. We studied 76 patients with a spectrum of LV function who underwent same-day echocardiogram and invasive left-heart catheterization. Speckle tracking was used to measure peak LA strain. The protocol involved a retrospective derivation group (N = 26) and an independent prospective validation cohort (N = 50) to derive and then test a peak LA strain cutoff which would identify pre-A-wave LV diastolic pressure > 15 mmHg. The guidelines-based assessment of filling pressures and peak LA strain were compared side-by-side against invasive hemodynamic data. In the derivation cohort, receiver-operating characteristic analysis showed area under curve of 0.76 and a peak LA strain cutoff < 20% was identified as optimal to detect elevated filling pressure. In the validation cohort, peak LA strain demonstrated better agreement with the invasive reference (81%) than the guidelines algorithm (72%). The improvement in classification using LA strain compared to the guidelines was more pronounced in subjects with normal LV function (91% versus 81%). In summary, the use of a peak LA strain to estimate elevated LV filling pressures is more accurate than the current guidelines. Incorporation of LA strain into the non-invasive assessment of LV diastolic function may improve the detection of elevated filling pressures. More... »

PAGES

23-32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-018-1425-y

DOI

http://dx.doi.org/10.1007/s10554-018-1425-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105900229

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30062535


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrial Function, Left", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diastole", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echocardiography, Doppler, Pulsed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitral Valve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke Volume", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tricuspid Valve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Dysfunction, Left", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function, Left", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Pressure", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA", 
            "University of Wisconsin-Madison, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Amita", 
        "id": "sg:person.016704270015.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704270015.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medvedofsky", 
        "givenName": "Diego", 
        "id": "sg:person.01160177243.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160177243.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Shore University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.240382.f", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA", 
            "North Shore University Hospital, Manhasset, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mediratta", 
        "givenName": "Anuj", 
        "id": "sg:person.01206233220.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206233220.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balaney", 
        "givenName": "Bhavna", 
        "id": "sg:person.01001145642.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001145642.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kruse", 
        "givenName": "Eric", 
        "id": "sg:person.01123216612.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123216612.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciszek", 
        "givenName": "Boguslawa", 
        "id": "sg:person.015763224461.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015763224461.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "Atman P.", 
        "id": "sg:person.0672350443.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672350443.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blair", 
        "givenName": "John E.", 
        "id": "sg:person.01002457771.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002457771.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universita della Svizzera Italiana", 
          "id": "https://www.grid.ac/institutes/grid.29078.34", 
          "name": [
            "Universit\u00e0 della Svizzera Italiana, Lugano, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maffessanti", 
        "givenName": "Francesco", 
        "id": "sg:person.01077357567.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077357567.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Addetia", 
        "givenName": "Karima", 
        "id": "sg:person.0610660114.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610660114.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mor-Avi", 
        "givenName": "Victor", 
        "id": "sg:person.01142234765.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142234765.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "Roberto M.", 
        "id": "sg:person.01226662630.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226662630.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/circimaging.108.813071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001862750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.108.813071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001862750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circheartfailure.115.002763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002607680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circheartfailure.115.002763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002607680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2016.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005769545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jeu219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008884960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2015.07.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010516661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2014.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011874800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jev028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019133327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2016.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019577865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2014.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035112289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2015.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035910407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2008.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037480647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2014.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042952638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jer006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059552630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.115.003754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079236830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.115.003754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079236830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.115.003754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079236830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.115.003754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079236830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.116.005467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084235052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.116.005467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084235052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2017.01.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084755419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2017.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085107008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/echo.13595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090302792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2017.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092728973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.recesp.2017.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101335901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Echocardiographic assessment of left ventricular (LV) filling pressures is performed using a multi-parametric algorithm. Left atrial (LA) strain was recently found to accurately classify the degree of diastolic dysfunction. We hypothesized that LA strain could be used as a stand-alone marker and sought to identify and test a cutoff, which would accurately detect elevated LV pressures. We studied 76 patients with a spectrum of LV function who underwent same-day echocardiogram and invasive left-heart catheterization. Speckle tracking was used to measure peak LA strain. The protocol involved a retrospective derivation group (N\u2009=\u200926) and an independent prospective validation cohort (N\u2009=\u200950) to derive and then test a peak LA strain cutoff which would identify pre-A-wave LV diastolic pressure\u2009>\u200915\u00a0mmHg. The guidelines-based assessment of filling pressures and peak LA strain were compared side-by-side against invasive hemodynamic data. In the derivation cohort, receiver-operating characteristic analysis showed area under curve of 0.76 and a peak LA strain cutoff\u2009<\u200920% was identified as optimal to detect elevated filling pressure. In the validation cohort, peak LA strain demonstrated better agreement with the invasive reference (81%) than the guidelines algorithm (72%). The improvement in classification using LA strain compared to the guidelines was more pronounced in subjects with normal LV function (91% versus 81%). In summary, the use of a peak LA strain to estimate elevated LV filling pressures is more accurate than the current guidelines. Incorporation of LA strain into the non-invasive assessment of LV diastolic function may improve the detection of elevated filling pressures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-018-1425-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684678", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures", 
    "pagination": "23-32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e007eeee4ff7ee5913c8d24f90306f5aade84a709b3d4585db5f9c3db46791a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30062535"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-018-1425-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105900229"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-018-1425-y", 
      "https://app.dimensions.ai/details/publication/pub.1105900229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127463_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10554-018-1425-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-018-1425-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-018-1425-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-018-1425-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-018-1425-y'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      68 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-018-1425-y schema:about N14b200ecf33c4007bce735e1fcbc618c
2 N1bccc7c4746345c29c1c26407b36fee1
3 N1c18d34a016e485c9264aeb7765eef38
4 N4d8e66b2c018435fb24f718fb1939991
5 N5ac2682dc35548feb1fdeeccbad9deb9
6 N6360b22d10374965b1fd06ef79f00b9e
7 N7354b3510af046d18a4560bd1b0e5222
8 N76768e5f20764160bab486d99f1f09ba
9 N7aa99e7cddda4565b71013e68d122ab3
10 N7e1b6dc089d841e795e2665342c2eec9
11 N7f9670c1181f42148db3433780622268
12 N8555e4b9a2dd4d46ac70d9c87f04f70c
13 N875119cee25f4a9094cd029dfc1344e7
14 N9cbb6a9fe2424dd3ab0f11dfd79e1187
15 Na2adfebebd0449c6a92a447481093e76
16 Nc64fdef3612d4cb289341e9667ef98c7
17 Nd0692a42e4e1498cb5d3d32d0c219497
18 Nddbcc23245c048d7b262b23d1fccbed5
19 Ne6d282a2e76c452abd0c54b14e7fc19f
20 anzsrc-for:11
21 anzsrc-for:1102
22 schema:author N0c798c091cd24de0bec85ef03e9f1e54
23 schema:citation https://doi.org/10.1016/j.echo.2008.11.023
24 https://doi.org/10.1016/j.echo.2014.03.010
25 https://doi.org/10.1016/j.echo.2014.10.003
26 https://doi.org/10.1016/j.echo.2014.11.003
27 https://doi.org/10.1016/j.echo.2015.07.004
28 https://doi.org/10.1016/j.echo.2015.07.028
29 https://doi.org/10.1016/j.echo.2016.01.011
30 https://doi.org/10.1016/j.echo.2017.03.014
31 https://doi.org/10.1016/j.jacc.2017.01.058
32 https://doi.org/10.1016/j.jcmg.2016.08.014
33 https://doi.org/10.1016/j.jcmg.2017.07.029
34 https://doi.org/10.1016/j.recesp.2017.09.020
35 https://doi.org/10.1093/ehjci/jeu219
36 https://doi.org/10.1093/ehjci/jev028
37 https://doi.org/10.1093/ejechocard/jer006
38 https://doi.org/10.1111/echo.13595
39 https://doi.org/10.1161/circheartfailure.115.002763
40 https://doi.org/10.1161/circimaging.108.813071
41 https://doi.org/10.1161/circimaging.115.003754
42 https://doi.org/10.1161/circimaging.116.005467
43 schema:datePublished 2019-01
44 schema:datePublishedReg 2019-01-01
45 schema:description Echocardiographic assessment of left ventricular (LV) filling pressures is performed using a multi-parametric algorithm. Left atrial (LA) strain was recently found to accurately classify the degree of diastolic dysfunction. We hypothesized that LA strain could be used as a stand-alone marker and sought to identify and test a cutoff, which would accurately detect elevated LV pressures. We studied 76 patients with a spectrum of LV function who underwent same-day echocardiogram and invasive left-heart catheterization. Speckle tracking was used to measure peak LA strain. The protocol involved a retrospective derivation group (N = 26) and an independent prospective validation cohort (N = 50) to derive and then test a peak LA strain cutoff which would identify pre-A-wave LV diastolic pressure > 15 mmHg. The guidelines-based assessment of filling pressures and peak LA strain were compared side-by-side against invasive hemodynamic data. In the derivation cohort, receiver-operating characteristic analysis showed area under curve of 0.76 and a peak LA strain cutoff < 20% was identified as optimal to detect elevated filling pressure. In the validation cohort, peak LA strain demonstrated better agreement with the invasive reference (81%) than the guidelines algorithm (72%). The improvement in classification using LA strain compared to the guidelines was more pronounced in subjects with normal LV function (91% versus 81%). In summary, the use of a peak LA strain to estimate elevated LV filling pressures is more accurate than the current guidelines. Incorporation of LA strain into the non-invasive assessment of LV diastolic function may improve the detection of elevated filling pressures.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N061106151b6f4ab9b6e5478b448e38e4
50 N70068c5d98344075b4aeced4c0c8f2ee
51 sg:journal.1025429
52 schema:name Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures
53 schema:pagination 23-32
54 schema:productId N2ca4566ac5494f53b874e7f32d3175ef
55 Na3b29dc14cbd406c82debda0e548d7c9
56 Naa7bf622d96b4d649f84d9d832505228
57 Nd59a3fbd5f024551842e13e651f04d98
58 Nef44b03c42ae47bbbe864ffc6267e740
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105900229
60 https://doi.org/10.1007/s10554-018-1425-y
61 schema:sdDatePublished 2019-04-11T11:48
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Neb129dd9bd5b452e991dfd8275ee9061
64 schema:url https://link.springer.com/10.1007%2Fs10554-018-1425-y
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N061106151b6f4ab9b6e5478b448e38e4 schema:volumeNumber 35
69 rdf:type schema:PublicationVolume
70 N0c798c091cd24de0bec85ef03e9f1e54 rdf:first sg:person.016704270015.09
71 rdf:rest N0eebfba7883f49be9d01ab95ba47e540
72 N0eebfba7883f49be9d01ab95ba47e540 rdf:first sg:person.01160177243.72
73 rdf:rest Nc6b40ab2843349bbae78ee8c8a4f4946
74 N13a11680b6134b1782496f7bcbb91ac0 rdf:first sg:person.01123216612.08
75 rdf:rest N79aaa0c4f3194905a6592a323c541d46
76 N14b200ecf33c4007bce735e1fcbc618c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Tricuspid Valve
78 rdf:type schema:DefinedTerm
79 N1bccc7c4746345c29c1c26407b36fee1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Male
81 rdf:type schema:DefinedTerm
82 N1c18d34a016e485c9264aeb7765eef38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Prognosis
84 rdf:type schema:DefinedTerm
85 N2ca4566ac5494f53b874e7f32d3175ef schema:name readcube_id
86 schema:value 2e007eeee4ff7ee5913c8d24f90306f5aade84a709b3d4585db5f9c3db46791a
87 rdf:type schema:PropertyValue
88 N3394588955004e26bb9e28d204646827 rdf:first sg:person.01077357567.81
89 rdf:rest Nd920bcc59f9c4532a4766c399858c8d2
90 N4d8e66b2c018435fb24f718fb1939991 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Echocardiography, Doppler, Pulsed
92 rdf:type schema:DefinedTerm
93 N518e55f9e6cc48beb134956a5e04af84 rdf:first sg:person.01001145642.42
94 rdf:rest N13a11680b6134b1782496f7bcbb91ac0
95 N5ac2682dc35548feb1fdeeccbad9deb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Ventricular Dysfunction, Left
97 rdf:type schema:DefinedTerm
98 N6360b22d10374965b1fd06ef79f00b9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Middle Aged
100 rdf:type schema:DefinedTerm
101 N70068c5d98344075b4aeced4c0c8f2ee schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 N7354b3510af046d18a4560bd1b0e5222 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Ventricular Pressure
105 rdf:type schema:DefinedTerm
106 N73cf6e7bc27547c1a8a75679f004f60e rdf:first sg:person.0672350443.05
107 rdf:rest Nada97f2831c34b19be5fc296ab44b85b
108 N76768e5f20764160bab486d99f1f09ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Ventricular Function, Left
110 rdf:type schema:DefinedTerm
111 N79aaa0c4f3194905a6592a323c541d46 rdf:first sg:person.015763224461.63
112 rdf:rest N73cf6e7bc27547c1a8a75679f004f60e
113 N7aa99e7cddda4565b71013e68d122ab3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Female
115 rdf:type schema:DefinedTerm
116 N7e1b6dc089d841e795e2665342c2eec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Atrial Function, Left
118 rdf:type schema:DefinedTerm
119 N7f9670c1181f42148db3433780622268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Diastole
121 rdf:type schema:DefinedTerm
122 N8555e4b9a2dd4d46ac70d9c87f04f70c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Stroke Volume
124 rdf:type schema:DefinedTerm
125 N875119cee25f4a9094cd029dfc1344e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Aged
127 rdf:type schema:DefinedTerm
128 N9cbb6a9fe2424dd3ab0f11dfd79e1187 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Prospective Studies
130 rdf:type schema:DefinedTerm
131 Na2adfebebd0449c6a92a447481093e76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Reproducibility of Results
133 rdf:type schema:DefinedTerm
134 Na3b29dc14cbd406c82debda0e548d7c9 schema:name dimensions_id
135 schema:value pub.1105900229
136 rdf:type schema:PropertyValue
137 Naa7bf622d96b4d649f84d9d832505228 schema:name doi
138 schema:value 10.1007/s10554-018-1425-y
139 rdf:type schema:PropertyValue
140 Nada97f2831c34b19be5fc296ab44b85b rdf:first sg:person.01002457771.25
141 rdf:rest N3394588955004e26bb9e28d204646827
142 Nc64fdef3612d4cb289341e9667ef98c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Mitral Valve
144 rdf:type schema:DefinedTerm
145 Nc6b40ab2843349bbae78ee8c8a4f4946 rdf:first sg:person.01206233220.05
146 rdf:rest N518e55f9e6cc48beb134956a5e04af84
147 Ncdaa39cf7aec409d8ac624aec50f4503 rdf:first sg:person.01226662630.00
148 rdf:rest rdf:nil
149 Nd0692a42e4e1498cb5d3d32d0c219497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Humans
151 rdf:type schema:DefinedTerm
152 Nd59a3fbd5f024551842e13e651f04d98 schema:name pubmed_id
153 schema:value 30062535
154 rdf:type schema:PropertyValue
155 Nd920bcc59f9c4532a4766c399858c8d2 rdf:first sg:person.0610660114.39
156 rdf:rest Nf2bbce848abe41fea88161861edd4d56
157 Nddbcc23245c048d7b262b23d1fccbed5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Predictive Value of Tests
159 rdf:type schema:DefinedTerm
160 Ne6d282a2e76c452abd0c54b14e7fc19f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Retrospective Studies
162 rdf:type schema:DefinedTerm
163 Neb129dd9bd5b452e991dfd8275ee9061 schema:name Springer Nature - SN SciGraph project
164 rdf:type schema:Organization
165 Nef44b03c42ae47bbbe864ffc6267e740 schema:name nlm_unique_id
166 schema:value 100969716
167 rdf:type schema:PropertyValue
168 Nf2bbce848abe41fea88161861edd4d56 rdf:first sg:person.01142234765.35
169 rdf:rest Ncdaa39cf7aec409d8ac624aec50f4503
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
174 schema:name Cardiorespiratory Medicine and Haematology
175 rdf:type schema:DefinedTerm
176 sg:grant.2684678 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-018-1425-y
177 rdf:type schema:MonetaryGrant
178 sg:journal.1025429 schema:issn 1569-5794
179 1573-0743
180 schema:name The International Journal of Cardiovascular Imaging
181 rdf:type schema:Periodical
182 sg:person.01001145642.42 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
183 schema:familyName Balaney
184 schema:givenName Bhavna
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001145642.42
186 rdf:type schema:Person
187 sg:person.01002457771.25 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
188 schema:familyName Blair
189 schema:givenName John E.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002457771.25
191 rdf:type schema:Person
192 sg:person.01077357567.81 schema:affiliation https://www.grid.ac/institutes/grid.29078.34
193 schema:familyName Maffessanti
194 schema:givenName Francesco
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077357567.81
196 rdf:type schema:Person
197 sg:person.01123216612.08 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
198 schema:familyName Kruse
199 schema:givenName Eric
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123216612.08
201 rdf:type schema:Person
202 sg:person.01142234765.35 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
203 schema:familyName Mor-Avi
204 schema:givenName Victor
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142234765.35
206 rdf:type schema:Person
207 sg:person.01160177243.72 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
208 schema:familyName Medvedofsky
209 schema:givenName Diego
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160177243.72
211 rdf:type schema:Person
212 sg:person.01206233220.05 schema:affiliation https://www.grid.ac/institutes/grid.240382.f
213 schema:familyName Mediratta
214 schema:givenName Anuj
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206233220.05
216 rdf:type schema:Person
217 sg:person.01226662630.00 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
218 schema:familyName Lang
219 schema:givenName Roberto M.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226662630.00
221 rdf:type schema:Person
222 sg:person.015763224461.63 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
223 schema:familyName Ciszek
224 schema:givenName Boguslawa
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015763224461.63
226 rdf:type schema:Person
227 sg:person.016704270015.09 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
228 schema:familyName Singh
229 schema:givenName Amita
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704270015.09
231 rdf:type schema:Person
232 sg:person.0610660114.39 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
233 schema:familyName Addetia
234 schema:givenName Karima
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610660114.39
236 rdf:type schema:Person
237 sg:person.0672350443.05 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
238 schema:familyName Shah
239 schema:givenName Atman P.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672350443.05
241 rdf:type schema:Person
242 https://doi.org/10.1016/j.echo.2008.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037480647
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.echo.2014.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011874800
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.echo.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035112289
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.echo.2014.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042952638
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.echo.2015.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035910407
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.echo.2015.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010516661
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.echo.2016.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005769545
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.echo.2017.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085107008
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jacc.2017.01.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084755419
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.jcmg.2016.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019577865
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.jcmg.2017.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092728973
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.recesp.2017.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101335901
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/ehjci/jeu219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008884960
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/ehjci/jev028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019133327
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/ejechocard/jer006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059552630
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1111/echo.13595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090302792
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1161/circheartfailure.115.002763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002607680
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1161/circimaging.108.813071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001862750
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1161/circimaging.115.003754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079236830
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1161/circimaging.116.005467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084235052
281 rdf:type schema:CreativeWork
282 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
283 schema:name University of Chicago Medical Center, Chicago, IL, USA
284 University of Wisconsin-Madison, Madison, WI, USA
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.240382.f schema:alternateName North Shore University Hospital
287 schema:name North Shore University Hospital, Manhasset, NY, USA
288 University of Chicago Medical Center, Chicago, IL, USA
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.29078.34 schema:alternateName Universita della Svizzera Italiana
291 schema:name Università della Svizzera Italiana, Lugano, Switzerland
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.412578.d schema:alternateName University of Chicago Medical Center
294 schema:name University of Chicago Medical Center, Chicago, IL, USA
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...