CT based 3D printing is superior to transesophageal echocardiography for pre-procedure planning in left atrial appendage device closure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Edinrin Obasare, Sumeet K. Mainigi, D. Lynn Morris, Leandro Slipczuk, Igor Goykhman, Evan Friend, Mary Rodriguez Ziccardi, Gregg S. Pressman

ABSTRACT

Accurate assessment of the left atrial appendage (LAA) is important for pre-procedure planning when utilizing device closure for stroke reduction. Sizing is traditionally done with transesophageal echocardiography (TEE) but this is not always precise. Three-dimensional (3D) printing of the LAA may be more accurate. 24 patients underwent Watchman device (WD) implantation (71 ± 11 years, 42% female). All had complete 2-dimensional TEE. Fourteen also had cardiac computed tomography (CCT) with 3D printing to produce a latex model of the LAA for pre-procedure planning. Device implantation was unsuccessful in 2 cases (one with and one without a 3D model). The model correlated perfectly with implanted device size (R2 = 1; p < 0.001), while TEE-predicted size showed inferior correlation (R2 = 0.34; 95% CI 0.23-0.98, p = 0.03). Fisher's exact test showed the model better predicted final WD size than TEE (100 vs. 60%, p = 0.02). Use of the model was associated with reduced procedure time (70 ± 20 vs. 107 ± 53 min, p = 0.03), anesthesia time (134 ± 31 vs. 182 ± 61 min, p = 0.03), and fluoroscopy time (11 ± 4 vs. 20 ± 13 min, p = 0.02). Absence of peri-device leak was also more likely when the model was used (92 vs. 56%, p = 0.04). There were trends towards reduced trans-septal puncture to catheter removal time (50 ± 20 vs. 73 ± 36 min, p = 0.07), number of device deployments (1.3 ± 0.5 vs. 2.0 ± 1.2, p = 0.08), and number of devices used (1.3 ± 0.5 vs. 1.9 ± 0.9, p = 0.07). Patient specific models of the LAA improve precision in closure device sizing. Use of the printed model allowed rapid and intuitive location of the best landing zone for the device. More... »

PAGES

821-831

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-017-1289-6

DOI

http://dx.doi.org/10.1007/s10554-017-1289-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099693982

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29222738


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrial Appendage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrial Fibrillation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac Catheterization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer-Aided Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echocardiography, Transesophageal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Latex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multidetector Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient-Specific Modeling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Printing, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prosthesis Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Einstein Heart and Vascular Institute, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA", 
            "Einstein Medical Center, 5501 Old York Road, Room 3232 Levy Building, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obasare", 
        "givenName": "Edinrin", 
        "id": "sg:person.011765670175.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011765670175.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Einstein Heart and Vascular Institute, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mainigi", 
        "givenName": "Sumeet K.", 
        "id": "sg:person.01043755231.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043755231.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Einstein Heart and Vascular Institute, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morris", 
        "givenName": "D. Lynn", 
        "id": "sg:person.01176024446.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176024446.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Einstein Heart and Vascular Institute, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slipczuk", 
        "givenName": "Leandro", 
        "id": "sg:person.01173714040.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173714040.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Department of Radiology, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goykhman", 
        "givenName": "Igor", 
        "id": "sg:person.0774057527.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774057527.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Einstein Heart and Vascular Institute, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friend", 
        "givenName": "Evan", 
        "id": "sg:person.011301172554.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011301172554.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Department of Internal Medicine, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziccardi", 
        "givenName": "Mary Rodriguez", 
        "id": "sg:person.0721035227.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721035227.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239276.b", 
          "name": [
            "Einstein Heart and Vascular Institute, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pressman", 
        "givenName": "Gregg S.", 
        "id": "sg:person.01045547415.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045547415.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejm199211123272002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009924090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hrthm.2013.09.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010045929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2012.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011134616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehi505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013175484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2014.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013219953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2014.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015889474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)61343-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016162960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000447444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018598527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2016.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019241072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2013.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023897743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2014.15192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024892610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjmed.2013.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025111834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/vhrm.s68117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025900836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.111.963892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028158348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.111.963892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028158348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2013.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030430102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2012.04.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030547759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.110.976449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033779947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-8167.2010.01814.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034287852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-8167.2010.01814.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034287852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.128.3.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039084074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-1050-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044293360", 
          "https://doi.org/10.1007/s10554-016-1050-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-1050-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044293360", 
          "https://doi.org/10.1007/s10554-016-1050-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044450665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045063651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045466943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.114389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046834664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.114389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046834664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2008.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052442234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacr.2006.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052482984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-0933-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052568939", 
          "https://doi.org/10.1007/s10554-016-0933-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-0933-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052568939", 
          "https://doi.org/10.1007/s10554-016-0933-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jew212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059501850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4244/eijv10i3a62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072398303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4244/eijy14m09_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072400416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-146-12-200706190-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073709095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000005637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074234289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000005637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074234289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4244/eijy14m08_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078963154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2016.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083694674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4244/eij-d-16-00921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085467898"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "Accurate assessment of the left atrial appendage (LAA) is important for pre-procedure planning when utilizing device closure for stroke reduction. Sizing is traditionally done with transesophageal echocardiography (TEE) but this is not always precise. Three-dimensional (3D) printing of the LAA may be more accurate. 24 patients underwent Watchman device (WD) implantation (71\u2009\u00b1\u200911 years, 42% female). All had complete 2-dimensional TEE. Fourteen also had cardiac computed tomography (CCT) with 3D printing to produce a latex model of the LAA for pre-procedure planning. Device implantation was unsuccessful in 2 cases (one with and one without a 3D model). The model correlated perfectly with implanted device size (R2\u2009=\u20091; p\u2009<\u20090.001), while TEE-predicted size showed inferior correlation (R2\u2009=\u20090.34; 95% CI 0.23-0.98, p\u2009=\u20090.03). Fisher's exact test showed the model better predicted final WD size than TEE (100 vs. 60%, p\u2009=\u20090.02). Use of the model was associated with reduced procedure time (70\u2009\u00b1\u200920 vs. 107\u2009\u00b1\u200953\u00a0min, p\u2009=\u20090.03), anesthesia time (134\u2009\u00b1\u200931 vs. 182\u2009\u00b1\u200961\u00a0min, p\u2009=\u20090.03), and fluoroscopy time (11\u2009\u00b1\u20094 vs. 20\u2009\u00b1\u200913\u00a0min, p\u2009=\u20090.02). Absence of peri-device leak was also more likely when the model was used (92 vs. 56%, p\u2009=\u20090.04). There were trends towards reduced trans-septal puncture to catheter removal time (50\u2009\u00b1\u200920 vs. 73\u2009\u00b1\u200936\u00a0min, p\u2009=\u20090.07), number of device deployments (1.3\u2009\u00b1\u20090.5 vs. 2.0\u2009\u00b1\u20091.2, p\u2009=\u20090.08), and number of devices used (1.3\u2009\u00b1\u20090.5 vs. 1.9\u2009\u00b1\u20090.9, p\u2009=\u20090.07). Patient specific models of the LAA improve precision in closure device sizing. Use of the printed model allowed rapid and intuitive location of the best landing zone for the device.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-017-1289-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "CT based 3D printing is superior to transesophageal echocardiography for pre-procedure planning in left atrial appendage device closure", 
    "pagination": "821-831", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3476c4b3032e25391b9d7c1d61ecdc4d54111e3973d9153a56d1e90e1b8f8034"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29222738"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-017-1289-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099693982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-017-1289-6", 
      "https://app.dimensions.ai/details/publication/pub.1099693982"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10554-017-1289-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1289-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1289-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1289-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1289-6'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      21 PREDICATES      84 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-017-1289-6 schema:about N1abd952d1c964ccd99446496061555a9
2 N2410d6168e0f462ea90959d51b8c1a06
3 N4538cffa2dbf49f8b32b506062701dab
4 N47066cfaeceb4538949c1654e05f5117
5 N4d949a7a61ee49bfa1d4c8a69b0ef447
6 N50a9c2fee1724a9cb03525b1798bc3a6
7 N662b4c61c6a844338f24f231ee2bc2e5
8 N6ed647018620483290ce23f7ab1b5e23
9 N717636d1b903486c8faac091468832f3
10 N734aa50a862043778705a7229a2f4da0
11 N87eb72abe5874eea89d40c168e721a9a
12 N9572257596744b06a36ea161b02808cd
13 Na552a9d3f9954498ac9861fe9160c716
14 Nab317df873c04d7ea2f0ce1bf1ae1b57
15 Nb928ae9787754f0caf10c0bc6f20e0d6
16 Nbd8140764cd8434887fc266263c83a09
17 Nbf40e77d90c34a56833388e90a48ef2f
18 Ncdbfa56494bd49fc91e794147e87181c
19 Ne41144df9ddf431eadf76e755ef89f24
20 Nfd5475269cf443369cdf19d9cab8b0c9
21 anzsrc-for:08
22 anzsrc-for:0801
23 schema:author N974eadae87a843f89c2ee78bc8673f71
24 schema:citation sg:pub.10.1007/s10554-016-0933-x
25 sg:pub.10.1007/s10554-016-1050-6
26 https://doi.org/10.1001/jama.2014.15192
27 https://doi.org/10.1016/j.ahj.2013.12.014
28 https://doi.org/10.1016/j.amjmed.2013.12.022
29 https://doi.org/10.1016/j.echo.2008.09.024
30 https://doi.org/10.1016/j.echo.2013.07.009
31 https://doi.org/10.1016/j.hrthm.2013.09.065
32 https://doi.org/10.1016/j.ijcard.2012.04.147
33 https://doi.org/10.1016/j.jacc.2012.04.032
34 https://doi.org/10.1016/j.jacc.2013.03.035
35 https://doi.org/10.1016/j.jacc.2014.04.029
36 https://doi.org/10.1016/j.jacc.2016.10.010
37 https://doi.org/10.1016/j.jacr.2006.06.006
38 https://doi.org/10.1016/j.jcin.2014.05.026
39 https://doi.org/10.1016/j.jcmg.2015.02.002
40 https://doi.org/10.1016/j.jcmg.2016.12.001
41 https://doi.org/10.1016/j.neuroimage.2006.01.015
42 https://doi.org/10.1016/s0140-6736(09)61343-x
43 https://doi.org/10.1056/nejm199211123272002
44 https://doi.org/10.1093/ehjci/jew212
45 https://doi.org/10.1093/eurheartj/ehi505
46 https://doi.org/10.1097/md.0000000000005637
47 https://doi.org/10.1111/j.1540-8167.2010.01814.x
48 https://doi.org/10.1159/000447444
49 https://doi.org/10.1161/circimaging.111.963892
50 https://doi.org/10.1161/circulationaha.110.976449
51 https://doi.org/10.1161/circulationaha.112.114389
52 https://doi.org/10.1378/chest.128.3.1853
53 https://doi.org/10.2147/vhrm.s68117
54 https://doi.org/10.4244/eij-d-16-00921
55 https://doi.org/10.4244/eijv10i3a62
56 https://doi.org/10.4244/eijy14m08_18
57 https://doi.org/10.4244/eijy14m09_18
58 https://doi.org/10.7326/0003-4819-146-12-200706190-00007
59 schema:datePublished 2018-05
60 schema:datePublishedReg 2018-05-01
61 schema:description Accurate assessment of the left atrial appendage (LAA) is important for pre-procedure planning when utilizing device closure for stroke reduction. Sizing is traditionally done with transesophageal echocardiography (TEE) but this is not always precise. Three-dimensional (3D) printing of the LAA may be more accurate. 24 patients underwent Watchman device (WD) implantation (71 ± 11 years, 42% female). All had complete 2-dimensional TEE. Fourteen also had cardiac computed tomography (CCT) with 3D printing to produce a latex model of the LAA for pre-procedure planning. Device implantation was unsuccessful in 2 cases (one with and one without a 3D model). The model correlated perfectly with implanted device size (R<sup>2</sup> = 1; p &lt; 0.001), while TEE-predicted size showed inferior correlation (R<sup>2</sup> = 0.34; 95% CI 0.23-0.98, p = 0.03). Fisher's exact test showed the model better predicted final WD size than TEE (100 vs. 60%, p = 0.02). Use of the model was associated with reduced procedure time (70 ± 20 vs. 107 ± 53 min, p = 0.03), anesthesia time (134 ± 31 vs. 182 ± 61 min, p = 0.03), and fluoroscopy time (11 ± 4 vs. 20 ± 13 min, p = 0.02). Absence of peri-device leak was also more likely when the model was used (92 vs. 56%, p = 0.04). There were trends towards reduced trans-septal puncture to catheter removal time (50 ± 20 vs. 73 ± 36 min, p = 0.07), number of device deployments (1.3 ± 0.5 vs. 2.0 ± 1.2, p = 0.08), and number of devices used (1.3 ± 0.5 vs. 1.9 ± 0.9, p = 0.07). Patient specific models of the LAA improve precision in closure device sizing. Use of the printed model allowed rapid and intuitive location of the best landing zone for the device.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N225fbd33bfc344b596a4346eeefa6218
66 Nabc9f8e9f3824ecdb266bba89bf2acd2
67 sg:journal.1025429
68 schema:name CT based 3D printing is superior to transesophageal echocardiography for pre-procedure planning in left atrial appendage device closure
69 schema:pagination 821-831
70 schema:productId N101f7f663cca4dd38310dd04fc3c4752
71 N19232040b81c44a0b3ae7eaad1b604ea
72 Naa56eeb551874235aa93e9e5a69eb56c
73 Nce11ccb5f7694f45b95dccb09e8577ea
74 Nd1ba2581b3684a7cbb268956b037c38e
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693982
76 https://doi.org/10.1007/s10554-017-1289-6
77 schema:sdDatePublished 2019-04-10T21:00
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N7013fc7b29224678bfb410a71f0a659f
80 schema:url http://link.springer.com/10.1007/s10554-017-1289-6
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N00e3627c3b38430dbe85b6d354e9350d rdf:first sg:person.01176024446.23
85 rdf:rest Ncd6493354c2549cb936d20ce7e300515
86 N0fec1be75ebf418c82c8b694a76ed10c rdf:first sg:person.011301172554.78
87 rdf:rest N809359f60f6847f7a5b01312fd226280
88 N101f7f663cca4dd38310dd04fc3c4752 schema:name pubmed_id
89 schema:value 29222738
90 rdf:type schema:PropertyValue
91 N19232040b81c44a0b3ae7eaad1b604ea schema:name readcube_id
92 schema:value 3476c4b3032e25391b9d7c1d61ecdc4d54111e3973d9153a56d1e90e1b8f8034
93 rdf:type schema:PropertyValue
94 N1abd952d1c964ccd99446496061555a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Humans
96 rdf:type schema:DefinedTerm
97 N225fbd33bfc344b596a4346eeefa6218 schema:volumeNumber 34
98 rdf:type schema:PublicationVolume
99 N2410d6168e0f462ea90959d51b8c1a06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Echocardiography, Transesophageal
101 rdf:type schema:DefinedTerm
102 N4538cffa2dbf49f8b32b506062701dab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Multidetector Computed Tomography
104 rdf:type schema:DefinedTerm
105 N47066cfaeceb4538949c1654e05f5117 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Printing, Three-Dimensional
107 rdf:type schema:DefinedTerm
108 N4d949a7a61ee49bfa1d4c8a69b0ef447 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Latex
110 rdf:type schema:DefinedTerm
111 N4ede2cc0f3414ae38be1bcb9c77270fb rdf:first sg:person.01045547415.40
112 rdf:rest rdf:nil
113 N50a9c2fee1724a9cb03525b1798bc3a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Cardiac Catheterization
115 rdf:type schema:DefinedTerm
116 N662b4c61c6a844338f24f231ee2bc2e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Male
118 rdf:type schema:DefinedTerm
119 N67910eb88df043cabae33159e39f0bc7 rdf:first sg:person.0774057527.37
120 rdf:rest N0fec1be75ebf418c82c8b694a76ed10c
121 N6ed647018620483290ce23f7ab1b5e23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Aged, 80 and over
123 rdf:type schema:DefinedTerm
124 N7013fc7b29224678bfb410a71f0a659f schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N717636d1b903486c8faac091468832f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Female
128 rdf:type schema:DefinedTerm
129 N734aa50a862043778705a7229a2f4da0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Aged
131 rdf:type schema:DefinedTerm
132 N809359f60f6847f7a5b01312fd226280 rdf:first sg:person.0721035227.01
133 rdf:rest N4ede2cc0f3414ae38be1bcb9c77270fb
134 N87eb72abe5874eea89d40c168e721a9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Treatment Outcome
136 rdf:type schema:DefinedTerm
137 N9572257596744b06a36ea161b02808cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Radiographic Image Interpretation, Computer-Assisted
139 rdf:type schema:DefinedTerm
140 N974eadae87a843f89c2ee78bc8673f71 rdf:first sg:person.011765670175.02
141 rdf:rest Nf6d3aeceb6f94704a10dc9e3008cdff6
142 Na552a9d3f9954498ac9861fe9160c716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Models, Cardiovascular
144 rdf:type schema:DefinedTerm
145 Naa56eeb551874235aa93e9e5a69eb56c schema:name dimensions_id
146 schema:value pub.1099693982
147 rdf:type schema:PropertyValue
148 Nab317df873c04d7ea2f0ce1bf1ae1b57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Middle Aged
150 rdf:type schema:DefinedTerm
151 Nabc9f8e9f3824ecdb266bba89bf2acd2 schema:issueNumber 5
152 rdf:type schema:PublicationIssue
153 Nb928ae9787754f0caf10c0bc6f20e0d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Prosthesis Design
155 rdf:type schema:DefinedTerm
156 Nbd8140764cd8434887fc266263c83a09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Atrial Fibrillation
158 rdf:type schema:DefinedTerm
159 Nbf40e77d90c34a56833388e90a48ef2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Atrial Appendage
161 rdf:type schema:DefinedTerm
162 Ncd6493354c2549cb936d20ce7e300515 rdf:first sg:person.01173714040.59
163 rdf:rest N67910eb88df043cabae33159e39f0bc7
164 Ncdbfa56494bd49fc91e794147e87181c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Predictive Value of Tests
166 rdf:type schema:DefinedTerm
167 Nce11ccb5f7694f45b95dccb09e8577ea schema:name doi
168 schema:value 10.1007/s10554-017-1289-6
169 rdf:type schema:PropertyValue
170 Nd1ba2581b3684a7cbb268956b037c38e schema:name nlm_unique_id
171 schema:value 100969716
172 rdf:type schema:PropertyValue
173 Ne41144df9ddf431eadf76e755ef89f24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Patient-Specific Modeling
175 rdf:type schema:DefinedTerm
176 Nf6d3aeceb6f94704a10dc9e3008cdff6 rdf:first sg:person.01043755231.48
177 rdf:rest N00e3627c3b38430dbe85b6d354e9350d
178 Nfd5475269cf443369cdf19d9cab8b0c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Computer-Aided Design
180 rdf:type schema:DefinedTerm
181 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
182 schema:name Information and Computing Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
185 schema:name Artificial Intelligence and Image Processing
186 rdf:type schema:DefinedTerm
187 sg:journal.1025429 schema:issn 1569-5794
188 1573-0743
189 schema:name The International Journal of Cardiovascular Imaging
190 rdf:type schema:Periodical
191 sg:person.01043755231.48 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
192 schema:familyName Mainigi
193 schema:givenName Sumeet K.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043755231.48
195 rdf:type schema:Person
196 sg:person.01045547415.40 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
197 schema:familyName Pressman
198 schema:givenName Gregg S.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045547415.40
200 rdf:type schema:Person
201 sg:person.011301172554.78 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
202 schema:familyName Friend
203 schema:givenName Evan
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011301172554.78
205 rdf:type schema:Person
206 sg:person.01173714040.59 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
207 schema:familyName Slipczuk
208 schema:givenName Leandro
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173714040.59
210 rdf:type schema:Person
211 sg:person.01176024446.23 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
212 schema:familyName Morris
213 schema:givenName D. Lynn
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176024446.23
215 rdf:type schema:Person
216 sg:person.011765670175.02 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
217 schema:familyName Obasare
218 schema:givenName Edinrin
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011765670175.02
220 rdf:type schema:Person
221 sg:person.0721035227.01 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
222 schema:familyName Ziccardi
223 schema:givenName Mary Rodriguez
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721035227.01
225 rdf:type schema:Person
226 sg:person.0774057527.37 schema:affiliation https://www.grid.ac/institutes/grid.239276.b
227 schema:familyName Goykhman
228 schema:givenName Igor
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774057527.37
230 rdf:type schema:Person
231 sg:pub.10.1007/s10554-016-0933-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052568939
232 https://doi.org/10.1007/s10554-016-0933-x
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s10554-016-1050-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044293360
235 https://doi.org/10.1007/s10554-016-1050-6
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1001/jama.2014.15192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024892610
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.ahj.2013.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023897743
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.amjmed.2013.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025111834
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.echo.2008.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052442234
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.echo.2013.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030430102
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.hrthm.2013.09.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010045929
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.ijcard.2012.04.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030547759
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jacc.2012.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011134616
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jacc.2013.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045063651
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jacc.2014.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013219953
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.jacc.2016.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019241072
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.jacr.2006.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052482984
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.jcin.2014.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015889474
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.jcmg.2015.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044450665
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.jcmg.2016.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083694674
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.neuroimage.2006.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466943
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/s0140-6736(09)61343-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016162960
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1056/nejm199211123272002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009924090
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1093/ehjci/jew212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059501850
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1093/eurheartj/ehi505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013175484
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1097/md.0000000000005637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074234289
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1111/j.1540-8167.2010.01814.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034287852
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1159/000447444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018598527
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1161/circimaging.111.963892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028158348
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/circulationaha.110.976449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033779947
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1161/circulationaha.112.114389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046834664
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1378/chest.128.3.1853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039084074
290 rdf:type schema:CreativeWork
291 https://doi.org/10.2147/vhrm.s68117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025900836
292 rdf:type schema:CreativeWork
293 https://doi.org/10.4244/eij-d-16-00921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085467898
294 rdf:type schema:CreativeWork
295 https://doi.org/10.4244/eijv10i3a62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072398303
296 rdf:type schema:CreativeWork
297 https://doi.org/10.4244/eijy14m08_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078963154
298 rdf:type schema:CreativeWork
299 https://doi.org/10.4244/eijy14m09_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072400416
300 rdf:type schema:CreativeWork
301 https://doi.org/10.7326/0003-4819-146-12-200706190-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709095
302 rdf:type schema:CreativeWork
303 https://www.grid.ac/institutes/grid.239276.b schema:alternateName Albert Einstein Medical Center
304 schema:name Department of Internal Medicine, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA
305 Department of Radiology, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA
306 Einstein Heart and Vascular Institute, Einstein Medical Center, 5501 Old York Road, 19141, Philadelphia, PA, USA
307 Einstein Medical Center, 5501 Old York Road, Room 3232 Levy Building, 19141, Philadelphia, PA, USA
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...