Relative atherosclerotic plaque volume by CT coronary angiography trumps conventional stenosis assessment for identifying flow-limiting lesions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Nahoko Kato, Satoru Kishi, Armin Arbab-Zadeh, Frank J. Rybicki, Shuzou Tanimoto, Jiro Aoki, Mika Watanabe, Yu Horiuchi, Koichi Furui, Kazuhiro Hara, Kenji Ibukuro, Joao A. C. Lima, Kengo Tanabe

ABSTRACT

The new methods for diagnosing the ischemia with coronary computed tomographic angiography (CTA) as a noninvasive test have been investigated. To compare the relative plaque volume to quantitative CTA and quantitative coronary angiography (QCA) for detecting flow-limiting coronary artery stenoses. We studied 49 patients with 55 intermediate lesions (30-69% diameter stenosis) who underwent CTA, coronary angiography (CAG), and FFR. CTA and QCA measures included lesion length, percent diameter stenosis (%DS), minimal lumen diameter (MLD), target main vessel percent plaque volume (%PV), lesion %PV, target main vessel percent lumen volume (%LV), and lesion %LV. FFR ≤0.80 was considered diagnostic of a flow-limiting lesion. The area under the receiver-operating characteristic curve (AUC) was used to determine the accuracy of detecting flow-limiting lesions. We also investigated the AUC of discrimination of flow-limiting lesion according to calcium score. Eighteen of 55 lesions (32.7%) had an FFR ≤0.80. Only vessel %PV differentiated between lesions with and without flow obstruction (67.6 vs. 62.7%, p = 0.018). The AUC for vessel %PV was greatest (0.76; 95% CI 0.61-0.87). The AUC for the discrimination of the flow-limiting lesions according to low calcium score (≤400) improved to 0.82 (95% CI 0.57-0.94). In intermediate coronary artery stenoses, vessel %PV is more accurate than conventional stenosis assessment for detecting flow-limiting lesions. In low calcium score, vessel %PV is more useful for diagnosis of ischemic heart disease compared with conventional quantitative measures. More... »

PAGES

1847-1855

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-017-1186-z

DOI

http://dx.doi.org/10.1007/s10554-017-1186-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085914608

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28597124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computed Tomography Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fractional Flow Reserve, Myocardial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multidetector Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Calcification", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Nahoko", 
        "id": "sg:person.014050606207.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014050606207.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Diabetes Mitsui Memorial Hospital, 1 Kandaizumi-cho Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishi", 
        "givenName": "Satoru", 
        "id": "sg:person.01345545500.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345545500.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411935.b", 
          "name": [
            "Division of Cardiology, Johns Hopkins Hospital and School of Medicine, Blalock 524, 600N Wolfe Street, 21287, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arbab-Zadeh", 
        "givenName": "Armin", 
        "id": "sg:person.0614373532.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614373532.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "The Ottawa Hospital Research Institute and Department of Radiology, The University of Ottawa, 501 Smyth Road, K1H 8L6, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rybicki", 
        "givenName": "Frank J.", 
        "id": "sg:person.01055157407.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055157407.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanimoto", 
        "givenName": "Shuzou", 
        "id": "sg:person.01035027615.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035027615.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aoki", 
        "givenName": "Jiro", 
        "id": "sg:person.0710455513.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710455513.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Mika", 
        "id": "sg:person.0577173354.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577173354.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horiuchi", 
        "givenName": "Yu", 
        "id": "sg:person.0721530741.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721530741.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furui", 
        "givenName": "Koichi", 
        "id": "sg:person.010265676551.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010265676551.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.01000422451.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000422451.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Diagnostic Radiology Mitsui Memorial Hospital, 1 Kandaizumi-cho Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibukuro", 
        "givenName": "Kenji", 
        "id": "sg:person.01046774707.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046774707.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411935.b", 
          "name": [
            "Division of Cardiology, Johns Hopkins Hospital and School of Medicine, Blalock 524, 600N Wolfe Street, 21287, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lima", 
        "givenName": "Joao A. C.", 
        "id": "sg:person.016123542477.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123542477.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanabe", 
        "givenName": "Kengo", 
        "id": "sg:person.01177070400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177070400.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/2012.jama.11274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002836133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.04.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005054729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005767876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1205361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008862821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1110874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010646154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2014.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011001441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.02.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012414634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2011.03.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014488189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021057664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021318064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc4501.099316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022977594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027708901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/eht488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031147351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-011-9970-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032988487", 
          "https://doi.org/10.1007/s10554-011-9970-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000140261.58966.a4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038279106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.07.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040047567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-013-0194-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040997379", 
          "https://doi.org/10.1007/s10554-013-0194-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.09.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042224307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042918285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044209235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0807611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.89.6.2525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046164109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.92.11.3183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063336333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077530757", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "The new methods for diagnosing the ischemia with coronary computed tomographic angiography (CTA) as a noninvasive test have been investigated. To compare the relative plaque volume to quantitative CTA and quantitative coronary angiography (QCA) for detecting flow-limiting coronary artery stenoses. We studied 49 patients with 55 intermediate lesions (30-69% diameter stenosis) who underwent CTA, coronary angiography (CAG), and FFR. CTA and QCA measures included lesion length, percent diameter stenosis (%DS), minimal lumen diameter (MLD), target main vessel percent plaque volume (%PV), lesion %PV, target main vessel percent lumen volume (%LV), and lesion %LV. FFR \u22640.80 was considered diagnostic of a flow-limiting lesion. The area under the receiver-operating characteristic curve (AUC) was used to determine the accuracy of detecting flow-limiting lesions. We also investigated the AUC of discrimination of flow-limiting lesion according to calcium score. Eighteen of 55 lesions (32.7%) had an FFR \u22640.80. Only vessel %PV differentiated between lesions with and without flow obstruction (67.6 vs. 62.7%, p\u2009=\u20090.018). The AUC for vessel %PV was greatest (0.76; 95% CI 0.61-0.87). The AUC for the discrimination of the flow-limiting lesions according to low calcium score (\u2264400) improved to 0.82 (95% CI 0.57-0.94). In intermediate coronary artery stenoses, vessel %PV is more accurate than conventional stenosis assessment for detecting flow-limiting lesions. In low calcium score, vessel %PV is more useful for diagnosis of ischemic heart disease compared with conventional quantitative measures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-017-1186-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Relative atherosclerotic plaque volume by CT coronary angiography trumps conventional stenosis assessment for identifying flow-limiting lesions", 
    "pagination": "1847-1855", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a8eb15c9cb4753e13a074abb5478d567bb4eeb8654bf39e88da71dfc0838f24e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28597124"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-017-1186-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085914608"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-017-1186-z", 
      "https://app.dimensions.ai/details/publication/pub.1085914608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10554-017-1186-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1186-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1186-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1186-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1186-z'


 

This table displays all metadata directly associated to this object as RDF triples.

324 TRIPLES      21 PREDICATES      75 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-017-1186-z schema:about N06bf9cefe6ea43a08aef72c5823837a1
2 N1fcf7188c2c24a8a81c14a7c4f3ee587
3 N21637a98686e4ba08e0ad5cf2466a8fd
4 N22825dc4578849b0b24a00c36fea8ace
5 N249eed830445466d81e57d36362b4d7a
6 N36c4f11cc74a446baee9acde4aca5f8a
7 N475148fe8da54d35b475b79d4e7822fd
8 N5d170146d3434a92888e472228e58f9d
9 N63795a2bc1ef48cfbcbfbf578bf77d3f
10 N6749aa8ae18b446597fa72c6f9ce0f67
11 N6866cb111f924345b806d44bd5dd2e62
12 N81782aa2c4404a5c8ecb9f387ba96054
13 N92d3f94167424c95a9ab1029069492a9
14 N96d4e292b0294a78b0de46a527034f63
15 Nab793b5d131348b79a6d568c77823a8d
16 Naf6323ca29c649ecb68126012c33f4bd
17 Nb3d358dddecd43378443a566888f5eb3
18 Nc4dd3801e49149ec9c1f57d47fc5ebbe
19 Nc568df6c20234dc5a33fdc47b4d96455
20 Ncaf0c00df6744117acc288a4a0d46f26
21 Ne992f0f0cd904e50ab2a178235c221d9
22 Nfecfca1d1cad4c90ba58d6fa03ff517b
23 anzsrc-for:11
24 anzsrc-for:1102
25 schema:author N617643f664de48f692c007c0975a4cd8
26 schema:citation sg:pub.10.1007/s10554-011-9970-7
27 sg:pub.10.1007/s10554-013-0194-x
28 https://app.dimensions.ai/details/publication/pub.1077530757
29 https://doi.org/10.1001/2012.jama.11274
30 https://doi.org/10.1016/j.amjcard.2011.03.073
31 https://doi.org/10.1016/j.jacc.2004.09.063
32 https://doi.org/10.1016/j.jacc.2007.03.044
33 https://doi.org/10.1016/j.jacc.2008.07.031
34 https://doi.org/10.1016/j.jacc.2009.02.068
35 https://doi.org/10.1016/j.jacc.2013.04.062
36 https://doi.org/10.1016/j.jacc.2013.07.076
37 https://doi.org/10.1016/j.jcmg.2011.03.006
38 https://doi.org/10.1016/j.jcmg.2011.09.006
39 https://doi.org/10.1016/j.jcmg.2012.01.009
40 https://doi.org/10.1016/j.jcmg.2012.09.004
41 https://doi.org/10.1016/j.jcmg.2014.11.002
42 https://doi.org/10.1056/nejmoa0807611
43 https://doi.org/10.1056/nejmoa1110874
44 https://doi.org/10.1056/nejmoa1205361
45 https://doi.org/10.1093/eurheartj/eht488
46 https://doi.org/10.1161/01.cir.0000140261.58966.a4
47 https://doi.org/10.1161/01.cir.89.6.2525
48 https://doi.org/10.1161/01.cir.92.11.3183
49 https://doi.org/10.1161/hc4501.099316
50 schema:datePublished 2017-11
51 schema:datePublishedReg 2017-11-01
52 schema:description The new methods for diagnosing the ischemia with coronary computed tomographic angiography (CTA) as a noninvasive test have been investigated. To compare the relative plaque volume to quantitative CTA and quantitative coronary angiography (QCA) for detecting flow-limiting coronary artery stenoses. We studied 49 patients with 55 intermediate lesions (30-69% diameter stenosis) who underwent CTA, coronary angiography (CAG), and FFR. CTA and QCA measures included lesion length, percent diameter stenosis (%DS), minimal lumen diameter (MLD), target main vessel percent plaque volume (%PV), lesion %PV, target main vessel percent lumen volume (%LV), and lesion %LV. FFR ≤0.80 was considered diagnostic of a flow-limiting lesion. The area under the receiver-operating characteristic curve (AUC) was used to determine the accuracy of detecting flow-limiting lesions. We also investigated the AUC of discrimination of flow-limiting lesion according to calcium score. Eighteen of 55 lesions (32.7%) had an FFR ≤0.80. Only vessel %PV differentiated between lesions with and without flow obstruction (67.6 vs. 62.7%, p = 0.018). The AUC for vessel %PV was greatest (0.76; 95% CI 0.61-0.87). The AUC for the discrimination of the flow-limiting lesions according to low calcium score (≤400) improved to 0.82 (95% CI 0.57-0.94). In intermediate coronary artery stenoses, vessel %PV is more accurate than conventional stenosis assessment for detecting flow-limiting lesions. In low calcium score, vessel %PV is more useful for diagnosis of ischemic heart disease compared with conventional quantitative measures.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf Ncb5fce476b1f4c4ab72415ae5c79a64c
57 Ncd2942f6bf3d4e298a62bc87bae783b3
58 sg:journal.1025429
59 schema:name Relative atherosclerotic plaque volume by CT coronary angiography trumps conventional stenosis assessment for identifying flow-limiting lesions
60 schema:pagination 1847-1855
61 schema:productId N4053f97607e34a6391297423e1520e1b
62 N5f1d6d638cd24c9bb976717585d24d8d
63 N5f52903617924f90bed4c51d5c6f400d
64 N729bbbeed72743b49d4f099ce492a71d
65 Nb06068d242a14d529ad77557465381db
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085914608
67 https://doi.org/10.1007/s10554-017-1186-z
68 schema:sdDatePublished 2019-04-11T10:33
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N511b9b651b3b484bb178d1faee21c7e0
71 schema:url https://link.springer.com/10.1007%2Fs10554-017-1186-z
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N05e64432dbdf4c619131e1aa48a62b61 rdf:first sg:person.01345545500.16
76 rdf:rest Na5dad50d9b7c4666814f48fbe0f21f53
77 N06bf9cefe6ea43a08aef72c5823837a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Coronary Angiography
79 rdf:type schema:DefinedTerm
80 N13f6c191a1e34b788fcb2837a0618e66 rdf:first sg:person.0710455513.95
81 rdf:rest Nd859295c449949b687a890b0c58296e2
82 N1c2d417237f3414289a9868dea64f48b rdf:first sg:person.0721530741.39
83 rdf:rest N3c5659b3861e42ab963a231016ffb00f
84 N1fcf7188c2c24a8a81c14a7c4f3ee587 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Coronary Vessels
86 rdf:type schema:DefinedTerm
87 N21637a98686e4ba08e0ad5cf2466a8fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Area Under Curve
89 rdf:type schema:DefinedTerm
90 N22825dc4578849b0b24a00c36fea8ace schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Retrospective Studies
92 rdf:type schema:DefinedTerm
93 N249eed830445466d81e57d36362b4d7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Reproducibility of Results
95 rdf:type schema:DefinedTerm
96 N36c4f11cc74a446baee9acde4aca5f8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Coronary Circulation
98 rdf:type schema:DefinedTerm
99 N3c5659b3861e42ab963a231016ffb00f rdf:first sg:person.010265676551.88
100 rdf:rest N5a4d733e7e5a425b8e4a2e50669c9fac
101 N4053f97607e34a6391297423e1520e1b schema:name pubmed_id
102 schema:value 28597124
103 rdf:type schema:PropertyValue
104 N475148fe8da54d35b475b79d4e7822fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Vascular Calcification
106 rdf:type schema:DefinedTerm
107 N511b9b651b3b484bb178d1faee21c7e0 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N5a4d733e7e5a425b8e4a2e50669c9fac rdf:first sg:person.01000422451.25
110 rdf:rest N63cf9da09c3a45aaa317eb1dfc8b84d3
111 N5c617c6de2324d0c9f55040fe75eedb2 rdf:first sg:person.01177070400.41
112 rdf:rest rdf:nil
113 N5d170146d3434a92888e472228e58f9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Male
115 rdf:type schema:DefinedTerm
116 N5f1d6d638cd24c9bb976717585d24d8d schema:name doi
117 schema:value 10.1007/s10554-017-1186-z
118 rdf:type schema:PropertyValue
119 N5f52903617924f90bed4c51d5c6f400d schema:name readcube_id
120 schema:value a8eb15c9cb4753e13a074abb5478d567bb4eeb8654bf39e88da71dfc0838f24e
121 rdf:type schema:PropertyValue
122 N617643f664de48f692c007c0975a4cd8 rdf:first sg:person.014050606207.36
123 rdf:rest N05e64432dbdf4c619131e1aa48a62b61
124 N63795a2bc1ef48cfbcbfbf578bf77d3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Female
126 rdf:type schema:DefinedTerm
127 N63cf9da09c3a45aaa317eb1dfc8b84d3 rdf:first sg:person.01046774707.44
128 rdf:rest Naf198b4b900f41afb598f8f5ca11b82d
129 N6749aa8ae18b446597fa72c6f9ce0f67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name ROC Curve
131 rdf:type schema:DefinedTerm
132 N6866cb111f924345b806d44bd5dd2e62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Aged
134 rdf:type schema:DefinedTerm
135 N729bbbeed72743b49d4f099ce492a71d schema:name nlm_unique_id
136 schema:value 100969716
137 rdf:type schema:PropertyValue
138 N81782aa2c4404a5c8ecb9f387ba96054 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Fractional Flow Reserve, Myocardial
140 rdf:type schema:DefinedTerm
141 N92d3f94167424c95a9ab1029069492a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Coronary Artery Disease
143 rdf:type schema:DefinedTerm
144 N96d4e292b0294a78b0de46a527034f63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Multidetector Computed Tomography
146 rdf:type schema:DefinedTerm
147 N987418792d154f6791a27e173ca9a11f rdf:first sg:person.01055157407.94
148 rdf:rest Na33cc9840542435b9afcbe3b0a101f4c
149 Na33cc9840542435b9afcbe3b0a101f4c rdf:first sg:person.01035027615.48
150 rdf:rest N13f6c191a1e34b788fcb2837a0618e66
151 Na5dad50d9b7c4666814f48fbe0f21f53 rdf:first sg:person.0614373532.31
152 rdf:rest N987418792d154f6791a27e173ca9a11f
153 Nab793b5d131348b79a6d568c77823a8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Plaque, Atherosclerotic
155 rdf:type schema:DefinedTerm
156 Naf198b4b900f41afb598f8f5ca11b82d rdf:first sg:person.016123542477.52
157 rdf:rest N5c617c6de2324d0c9f55040fe75eedb2
158 Naf6323ca29c649ecb68126012c33f4bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Predictive Value of Tests
160 rdf:type schema:DefinedTerm
161 Nb06068d242a14d529ad77557465381db schema:name dimensions_id
162 schema:value pub.1085914608
163 rdf:type schema:PropertyValue
164 Nb3d358dddecd43378443a566888f5eb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Severity of Illness Index
166 rdf:type schema:DefinedTerm
167 Nc3a569bb191246a782ce91d577dbe498 schema:name Division of Diabetes Mitsui Memorial Hospital, 1 Kandaizumi-cho Chiyoda-ku, Tokyo, Japan
168 rdf:type schema:Organization
169 Nc4dd3801e49149ec9c1f57d47fc5ebbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Humans
171 rdf:type schema:DefinedTerm
172 Nc568df6c20234dc5a33fdc47b4d96455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Computed Tomography Angiography
174 rdf:type schema:DefinedTerm
175 Ncaf0c00df6744117acc288a4a0d46f26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Coronary Stenosis
177 rdf:type schema:DefinedTerm
178 Ncb5fce476b1f4c4ab72415ae5c79a64c schema:issueNumber 11
179 rdf:type schema:PublicationIssue
180 Ncd2942f6bf3d4e298a62bc87bae783b3 schema:volumeNumber 33
181 rdf:type schema:PublicationVolume
182 Nd859295c449949b687a890b0c58296e2 rdf:first sg:person.0577173354.57
183 rdf:rest N1c2d417237f3414289a9868dea64f48b
184 Ne992f0f0cd904e50ab2a178235c221d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Middle Aged
186 rdf:type schema:DefinedTerm
187 Nf6756d2aba164558bcee7ac474e1a096 schema:name Division of Diagnostic Radiology Mitsui Memorial Hospital, 1 Kandaizumi-cho Chiyoda-ku, Tokyo, Japan
188 rdf:type schema:Organization
189 Nfecfca1d1cad4c90ba58d6fa03ff517b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Aged, 80 and over
191 rdf:type schema:DefinedTerm
192 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
193 schema:name Medical and Health Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
196 schema:name Cardiorespiratory Medicine and Haematology
197 rdf:type schema:DefinedTerm
198 sg:journal.1025429 schema:issn 1569-5794
199 1573-0743
200 schema:name The International Journal of Cardiovascular Imaging
201 rdf:type schema:Periodical
202 sg:person.01000422451.25 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
203 schema:familyName Hara
204 schema:givenName Kazuhiro
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000422451.25
206 rdf:type schema:Person
207 sg:person.010265676551.88 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
208 schema:familyName Furui
209 schema:givenName Koichi
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010265676551.88
211 rdf:type schema:Person
212 sg:person.01035027615.48 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
213 schema:familyName Tanimoto
214 schema:givenName Shuzou
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035027615.48
216 rdf:type schema:Person
217 sg:person.01046774707.44 schema:affiliation Nf6756d2aba164558bcee7ac474e1a096
218 schema:familyName Ibukuro
219 schema:givenName Kenji
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046774707.44
221 rdf:type schema:Person
222 sg:person.01055157407.94 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
223 schema:familyName Rybicki
224 schema:givenName Frank J.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055157407.94
226 rdf:type schema:Person
227 sg:person.01177070400.41 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
228 schema:familyName Tanabe
229 schema:givenName Kengo
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177070400.41
231 rdf:type schema:Person
232 sg:person.01345545500.16 schema:affiliation Nc3a569bb191246a782ce91d577dbe498
233 schema:familyName Kishi
234 schema:givenName Satoru
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345545500.16
236 rdf:type schema:Person
237 sg:person.014050606207.36 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
238 schema:familyName Kato
239 schema:givenName Nahoko
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014050606207.36
241 rdf:type schema:Person
242 sg:person.016123542477.52 schema:affiliation https://www.grid.ac/institutes/grid.411935.b
243 schema:familyName Lima
244 schema:givenName Joao A. C.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123542477.52
246 rdf:type schema:Person
247 sg:person.0577173354.57 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
248 schema:familyName Watanabe
249 schema:givenName Mika
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577173354.57
251 rdf:type schema:Person
252 sg:person.0614373532.31 schema:affiliation https://www.grid.ac/institutes/grid.411935.b
253 schema:familyName Arbab-Zadeh
254 schema:givenName Armin
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614373532.31
256 rdf:type schema:Person
257 sg:person.0710455513.95 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
258 schema:familyName Aoki
259 schema:givenName Jiro
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710455513.95
261 rdf:type schema:Person
262 sg:person.0721530741.39 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
263 schema:familyName Horiuchi
264 schema:givenName Yu
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721530741.39
266 rdf:type schema:Person
267 sg:pub.10.1007/s10554-011-9970-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032988487
268 https://doi.org/10.1007/s10554-011-9970-7
269 rdf:type schema:CreativeWork
270 sg:pub.10.1007/s10554-013-0194-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040997379
271 https://doi.org/10.1007/s10554-013-0194-x
272 rdf:type schema:CreativeWork
273 https://app.dimensions.ai/details/publication/pub.1077530757 schema:CreativeWork
274 https://doi.org/10.1001/2012.jama.11274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002836133
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.amjcard.2011.03.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014488189
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.jacc.2004.09.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042224307
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.jacc.2007.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042918285
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.jacc.2008.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044209235
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.jacc.2009.02.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012414634
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.jacc.2013.04.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005054729
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/j.jacc.2013.07.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040047567
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/j.jcmg.2011.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027708901
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1016/j.jcmg.2011.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021318064
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/j.jcmg.2012.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021057664
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/j.jcmg.2012.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005767876
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1016/j.jcmg.2014.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011001441
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1056/nejmoa0807611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990023
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1056/nejmoa1110874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010646154
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1056/nejmoa1205361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008862821
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1093/eurheartj/eht488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031147351
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1161/01.cir.0000140261.58966.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038279106
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1161/01.cir.89.6.2525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046164109
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1161/01.cir.92.11.3183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063336333
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1161/hc4501.099316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022977594
315 rdf:type schema:CreativeWork
316 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
317 schema:name The Ottawa Hospital Research Institute and Department of Radiology, The University of Ottawa, 501 Smyth Road, K1H 8L6, Ottawa, ON, Canada
318 rdf:type schema:Organization
319 https://www.grid.ac/institutes/grid.411935.b schema:alternateName Johns Hopkins Hospital
320 schema:name Division of Cardiology, Johns Hopkins Hospital and School of Medicine, Blalock 524, 600N Wolfe Street, 21287, Baltimore, MD, USA
321 rdf:type schema:Organization
322 https://www.grid.ac/institutes/grid.415980.1 schema:alternateName Mitsui Memorial Hospital
323 schema:name Division of Cardiology, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo, Japan
324 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...