Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy: comparison of diagnostic performance in myocardial fibrosis between gadobutrol and gadopentetate ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08

AUTHORS

Dongting Liu, Xiaohai Ma, Jiayi Liu, Lei Zhao, Hui Chen, Lei Xu, Zhonghua Sun, Zhanming Fan

ABSTRACT

The purpose of this study was to compare different semi-automated late gadolinium enhancement (LGE) quantification techniques using gadobutrol and gadopentetate dimeglumine contrast agents with regard to the diagnosis of fibrotic myocardium in patients with hypertrophic cardiomyopathy (HCM). Thirty patients with HCM underwent two cardiac MRI protocols with use of gadobutrol and gadopentetate dimeglumine. Contrast-to-noise ratio (CNR) between LGE area and remote myocardium (CNRremote), between LGE area and left ventricular blood pool (CNRpool), and signal-to-noise ratio (SNR) in LGE were compared. The presence and quantity of LGE were determined by visual assessment. With signal threshold versus reference mean (STRM) based thresholds of 2 SD, 5 SD, and 6 SD above the mean signal intensity (SI) of reference myocardium, the full-width at half-maximum (FWHM) technique was used. The volume and segments of the LGE area were compared between the two types of contrast agents. LGE was present in 26 of 30 (86.6%) patients in both protocols. The CNRremote of fibrotic myocardium in gadobutrol and gadopentetate dimeglumine agents was 26.82 ± 14.24 and 21.46 ± 10.59, respectively (P < 0.05). The CNRpool was significantly higher in gadobutrol (9.32 ± 7.64 vs. 6.39 ± 6.11, P < 0.05). The SNR was higher in gadobutrol (33.36 ± 14.35 vs. 27.53 ± 10.91, P < 0.05). The volume of scar size in MR images acquired with gadobutrol were significantly higher than those with gadopentetate dimeglumine (P < 0.05), and the STRM of 5 SD technique showed the greatest agreement with visual assessment (ICC = 0.99) in both examinations. There was no significant difference in fibrotic segments of the fibrotic myocardium in the LGE area (P < 0.05). This study proved that the Gadobutrol was an effective contrast agent for LGE imaging with superior delineation of fibrotic myocardium as compared to gadopentetate dimeglumine. The 5 SD technique yields the closest approximation of the extent of LGE identified by visual assessment. More... »

PAGES

1191-1200

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-017-1101-7

DOI

http://dx.doi.org/10.1007/s10554-017-1101-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084025453

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28289991


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiomyopathy, Hypertrophic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Dongting", 
        "id": "sg:person.013211040741.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013211040741.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xiaohai", 
        "id": "sg:person.01022200437.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022200437.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiayi", 
        "id": "sg:person.0666501601.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666501601.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Lei", 
        "id": "sg:person.01360451164.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360451164.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hui", 
        "id": "sg:person.015606262537.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015606262537.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "id": "sg:person.0713154075.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Curtin University", 
          "id": "https://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Department of Medical Radiation Sciences, Curtin University, 6102, Perth, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Zhonghua", 
        "id": "sg:person.01127454361.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127454361.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhanming", 
        "id": "sg:person.01017406664.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017406664.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006729364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.613414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008437538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jjcc.2011.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008667395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318236e354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008933829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318236e354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008933829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10090526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008968852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-015-0099-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009705658", 
          "https://doi.org/10.1186/s12880-015-0099-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circheartfailure.109.854026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011278301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circheartfailure.109.854026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011278301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.950675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011684701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.950675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011684701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2010.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011769114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483071579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012794096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013051756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2008.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015197889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2010.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022168618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-200205000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023228292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-200205000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023228292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jes125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023356687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2003.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023992474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12265-009-9147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495509", 
          "https://doi.org/10.1007/s12265-009-9147-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12265-009-9147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495509", 
          "https://doi.org/10.1007/s12265-009-9147-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-001-1242-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026541193", 
          "https://doi.org/10.1007/s00330-001-1242-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2010.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029186698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2301021085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031094160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0085-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558001", 
          "https://doi.org/10.1186/s12968-014-0085-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0085-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558001", 
          "https://doi.org/10.1186/s12968-014-0085-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2563-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034759897", 
          "https://doi.org/10.1007/s00330-012-2563-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-0963-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035623874", 
          "https://doi.org/10.1007/s10554-016-0963-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-0963-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035623874", 
          "https://doi.org/10.1007/s10554-016-0963-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(02)02602-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036776850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(02)02602-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036776850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-11-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601008", 
          "https://doi.org/10.1186/1532-429x-11-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.007094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041546736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.007094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041546736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)12389-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042369788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)12389-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042369788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182218dc3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046033507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182218dc3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046033507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047007609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047007609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-12-49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047423650", 
          "https://doi.org/10.1186/1532-429x-12-49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000184756.66360.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047558970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000184756.66360.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047558970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000184756.66360.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047558970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2013-305471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048932208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.218.3.r01mr12651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051851654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/jcmr-200053623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058431826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/34610669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064569157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.7118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069301887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091120", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078144005", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078148282", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08", 
    "datePublishedReg": "2017-08-01", 
    "description": "The purpose of this study was to compare different semi-automated late gadolinium enhancement (LGE) quantification techniques using gadobutrol and gadopentetate dimeglumine contrast agents with regard to the diagnosis of fibrotic myocardium in patients with hypertrophic cardiomyopathy (HCM). Thirty patients with HCM underwent two cardiac MRI protocols with use of gadobutrol and gadopentetate dimeglumine. Contrast-to-noise ratio (CNR) between LGE area and remote myocardium (CNRremote), between LGE area and left ventricular blood pool (CNRpool), and signal-to-noise ratio (SNR) in LGE were compared. The presence and quantity of LGE were determined by visual assessment. With signal threshold versus reference mean (STRM) based thresholds of 2 SD, 5 SD, and 6 SD above the mean signal intensity (SI) of reference myocardium, the full-width at half-maximum (FWHM) technique was used. The volume and segments of the LGE area were compared between the two types of contrast agents. LGE was present in 26 of 30 (86.6%) patients in both protocols. The CNRremote of fibrotic myocardium in gadobutrol and gadopentetate dimeglumine agents was 26.82\u2009\u00b1\u200914.24 and 21.46\u2009\u00b1\u200910.59, respectively (P\u2009<\u20090.05). The CNRpool was significantly higher in gadobutrol (9.32\u2009\u00b1\u20097.64 vs. 6.39\u2009\u00b1\u20096.11, P\u2009<\u20090.05). The SNR was higher in gadobutrol (33.36\u2009\u00b1\u200914.35 vs. 27.53\u2009\u00b1\u200910.91, P\u2009<\u20090.05). The volume of scar size in MR images acquired with gadobutrol were significantly higher than those with gadopentetate dimeglumine (P\u2009<\u20090.05), and the STRM of 5 SD technique showed the greatest agreement with visual assessment (ICC\u2009=\u20090.99) in both examinations. There was no significant difference in fibrotic segments of the fibrotic myocardium in the LGE area (P\u2009<\u20090.05). This study proved that the Gadobutrol was an effective contrast agent for LGE imaging with superior delineation of fibrotic myocardium as compared to gadopentetate dimeglumine. The 5 SD technique yields the closest approximation of the extent of LGE identified by visual assessment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-017-1101-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy: comparison of diagnostic performance in myocardial fibrosis between gadobutrol and gadopentetate dimeglumine", 
    "pagination": "1191-1200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0179c500c9eb8bdfac637816ccc64987bd72892f5a485a83dffa7b8bf65d9171"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28289991"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-017-1101-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084025453"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-017-1101-7", 
      "https://app.dimensions.ai/details/publication/pub.1084025453"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10554-017-1101-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1101-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1101-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1101-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-017-1101-7'


 

This table displays all metadata directly associated to this object as RDF triples.

314 TRIPLES      21 PREDICATES      86 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-017-1101-7 schema:about N1293d125a32e4e1fbe4698560a4d278d
2 N1d3b83e6cc194fefb326777d8aa7107e
3 N25a9d22d76484f9d98c43b87375aff1f
4 N295151def51a4fd3a06db00ae2423223
5 N4e5dabdaf1b74de6bcb3594a9f8837bb
6 N53db241bfd3346aeb4e670f1c8bbb8af
7 N724409372f84471eb3afb93d0fa96ef0
8 N8b9fc9e3c9e54248953ba964ec3396cb
9 N98fb970aa2da4120a41a71916eab82bc
10 N9995a0db23ca4ae0aa20a4bed636509f
11 Na11c273809b94851810bd2a4f1349692
12 Na122e501428640488a9ff72eca1a8576
13 Ncccb7c4ebbd34c73956d4f6f73a4836b
14 Ndce8a22d3ccb4fddb9536e1700f8bdd8
15 Ne9693f215a464eeb96efc469a436d69a
16 Nf444f4c935744d10a5cd50fc25dae3c1
17 Nf82b40e8fe494516b4b9680efb1a51b0
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author N746e306dc09b4c44b42c58477f697eff
21 schema:citation sg:pub.10.1007/s00330-001-1242-9
22 sg:pub.10.1007/s00330-012-2563-6
23 sg:pub.10.1007/s10554-016-0963-4
24 sg:pub.10.1007/s12265-009-9147-0
25 sg:pub.10.1186/1532-429x-11-6
26 sg:pub.10.1186/1532-429x-12-49
27 sg:pub.10.1186/s12880-015-0099-3
28 sg:pub.10.1186/s12968-014-0085-x
29 https://app.dimensions.ai/details/publication/pub.1075091120
30 https://app.dimensions.ai/details/publication/pub.1078144005
31 https://app.dimensions.ai/details/publication/pub.1078148282
32 https://doi.org/10.1016/j.ahj.2003.12.010
33 https://doi.org/10.1016/j.ejrad.2008.02.009
34 https://doi.org/10.1016/j.jacc.2004.09.020
35 https://doi.org/10.1016/j.jacc.2010.05.007
36 https://doi.org/10.1016/j.jacc.2010.06.004
37 https://doi.org/10.1016/j.jcmg.2010.11.015
38 https://doi.org/10.1016/j.jcmg.2011.04.014
39 https://doi.org/10.1016/j.jjcc.2011.07.007
40 https://doi.org/10.1016/s0140-6736(03)12389-6
41 https://doi.org/10.1016/s0735-1097(02)02602-5
42 https://doi.org/10.1081/jcmr-200053623
43 https://doi.org/10.1093/ehjci/jes125
44 https://doi.org/10.1097/00004424-200205000-00005
45 https://doi.org/10.1097/01.rli.0000184756.66360.d3
46 https://doi.org/10.1097/rli.0000000000000076
47 https://doi.org/10.1097/rli.0b013e3182218dc3
48 https://doi.org/10.1097/rli.0b013e318236e354
49 https://doi.org/10.1136/heartjnl-2013-305471
50 https://doi.org/10.1148/radiol.10090526
51 https://doi.org/10.1148/radiol.2301021085
52 https://doi.org/10.1148/radiol.2483071579
53 https://doi.org/10.1148/radiology.218.3.r01mr12651
54 https://doi.org/10.1161/circheartfailure.109.854026
55 https://doi.org/10.1161/circimaging.110.950675
56 https://doi.org/10.1161/circulationaha.106.613414
57 https://doi.org/10.1161/circulationaha.113.007094
58 https://doi.org/10.1259/bjr.20140307
59 https://doi.org/10.1259/bjr/34610669
60 https://doi.org/10.2214/ajr.11.7118
61 schema:datePublished 2017-08
62 schema:datePublishedReg 2017-08-01
63 schema:description The purpose of this study was to compare different semi-automated late gadolinium enhancement (LGE) quantification techniques using gadobutrol and gadopentetate dimeglumine contrast agents with regard to the diagnosis of fibrotic myocardium in patients with hypertrophic cardiomyopathy (HCM). Thirty patients with HCM underwent two cardiac MRI protocols with use of gadobutrol and gadopentetate dimeglumine. Contrast-to-noise ratio (CNR) between LGE area and remote myocardium (CNRremote), between LGE area and left ventricular blood pool (CNRpool), and signal-to-noise ratio (SNR) in LGE were compared. The presence and quantity of LGE were determined by visual assessment. With signal threshold versus reference mean (STRM) based thresholds of 2 SD, 5 SD, and 6 SD above the mean signal intensity (SI) of reference myocardium, the full-width at half-maximum (FWHM) technique was used. The volume and segments of the LGE area were compared between the two types of contrast agents. LGE was present in 26 of 30 (86.6%) patients in both protocols. The CNRremote of fibrotic myocardium in gadobutrol and gadopentetate dimeglumine agents was 26.82 ± 14.24 and 21.46 ± 10.59, respectively (P < 0.05). The CNRpool was significantly higher in gadobutrol (9.32 ± 7.64 vs. 6.39 ± 6.11, P < 0.05). The SNR was higher in gadobutrol (33.36 ± 14.35 vs. 27.53 ± 10.91, P < 0.05). The volume of scar size in MR images acquired with gadobutrol were significantly higher than those with gadopentetate dimeglumine (P < 0.05), and the STRM of 5 SD technique showed the greatest agreement with visual assessment (ICC = 0.99) in both examinations. There was no significant difference in fibrotic segments of the fibrotic myocardium in the LGE area (P < 0.05). This study proved that the Gadobutrol was an effective contrast agent for LGE imaging with superior delineation of fibrotic myocardium as compared to gadopentetate dimeglumine. The 5 SD technique yields the closest approximation of the extent of LGE identified by visual assessment.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree true
67 schema:isPartOf N55f6276b008c410c9912160a9d10caea
68 N711ef24aab5a41aabf837747018d5450
69 sg:journal.1025429
70 schema:name Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy: comparison of diagnostic performance in myocardial fibrosis between gadobutrol and gadopentetate dimeglumine
71 schema:pagination 1191-1200
72 schema:productId N378011df90f34664a0131f148d445f90
73 N5a92d231285d4207b1e856bbe2997aad
74 N602353bd9a594b7494fdea5e634f8a49
75 N67066ae2c7a14e78aafa1141fd97cc4b
76 Ne473f7b3332040d7a74a923310fa8275
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084025453
78 https://doi.org/10.1007/s10554-017-1101-7
79 schema:sdDatePublished 2019-04-11T09:36
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Ne3da0ba4888f4a12a032f0fcb9ab5906
82 schema:url https://link.springer.com/10.1007%2Fs10554-017-1101-7
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N029b594e3fb045a0b293a9e7919794f0 rdf:first sg:person.01017406664.97
87 rdf:rest rdf:nil
88 N1293d125a32e4e1fbe4698560a4d278d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Gadolinium DTPA
90 rdf:type schema:DefinedTerm
91 N1d3b83e6cc194fefb326777d8aa7107e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Fibrosis
93 rdf:type schema:DefinedTerm
94 N25a9d22d76484f9d98c43b87375aff1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Image Interpretation, Computer-Assisted
96 rdf:type schema:DefinedTerm
97 N295151def51a4fd3a06db00ae2423223 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Magnetic Resonance Imaging, Cine
99 rdf:type schema:DefinedTerm
100 N378011df90f34664a0131f148d445f90 schema:name doi
101 schema:value 10.1007/s10554-017-1101-7
102 rdf:type schema:PropertyValue
103 N39a2821a6a84490ea7512da4bce3b1e7 rdf:first sg:person.015606262537.26
104 rdf:rest N8d19b6867d394806bcfc46a6a81279a0
105 N4e5dabdaf1b74de6bcb3594a9f8837bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Male
107 rdf:type schema:DefinedTerm
108 N53db241bfd3346aeb4e670f1c8bbb8af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Myocardium
110 rdf:type schema:DefinedTerm
111 N55f6276b008c410c9912160a9d10caea schema:volumeNumber 33
112 rdf:type schema:PublicationVolume
113 N5a92d231285d4207b1e856bbe2997aad schema:name nlm_unique_id
114 schema:value 100969716
115 rdf:type schema:PropertyValue
116 N602353bd9a594b7494fdea5e634f8a49 schema:name dimensions_id
117 schema:value pub.1084025453
118 rdf:type schema:PropertyValue
119 N67066ae2c7a14e78aafa1141fd97cc4b schema:name readcube_id
120 schema:value 0179c500c9eb8bdfac637816ccc64987bd72892f5a485a83dffa7b8bf65d9171
121 rdf:type schema:PropertyValue
122 N711ef24aab5a41aabf837747018d5450 schema:issueNumber 8
123 rdf:type schema:PublicationIssue
124 N724409372f84471eb3afb93d0fa96ef0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Adult
126 rdf:type schema:DefinedTerm
127 N746e306dc09b4c44b42c58477f697eff rdf:first sg:person.013211040741.34
128 rdf:rest Ndadf6d0756d64484baba6dd9ced0af85
129 N7bb6f4eff5cd44b4ab467db82c53c0f0 rdf:first sg:person.0666501601.71
130 rdf:rest Ne3e708fc9a8d4cbab5a47474fe2127f5
131 N8567bd1009c44c0093b0c9adefac49e3 rdf:first sg:person.01127454361.85
132 rdf:rest N029b594e3fb045a0b293a9e7919794f0
133 N8b9fc9e3c9e54248953ba964ec3396cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 N8d19b6867d394806bcfc46a6a81279a0 rdf:first sg:person.0713154075.07
137 rdf:rest N8567bd1009c44c0093b0c9adefac49e3
138 N98fb970aa2da4120a41a71916eab82bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Reproducibility of Results
140 rdf:type schema:DefinedTerm
141 N9995a0db23ca4ae0aa20a4bed636509f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Contrast Media
143 rdf:type schema:DefinedTerm
144 Na11c273809b94851810bd2a4f1349692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Organometallic Compounds
146 rdf:type schema:DefinedTerm
147 Na122e501428640488a9ff72eca1a8576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Female
149 rdf:type schema:DefinedTerm
150 Ncccb7c4ebbd34c73956d4f6f73a4836b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Automation
152 rdf:type schema:DefinedTerm
153 Ndadf6d0756d64484baba6dd9ced0af85 rdf:first sg:person.01022200437.21
154 rdf:rest N7bb6f4eff5cd44b4ab467db82c53c0f0
155 Ndce8a22d3ccb4fddb9536e1700f8bdd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Cardiomyopathy, Hypertrophic
157 rdf:type schema:DefinedTerm
158 Ne3da0ba4888f4a12a032f0fcb9ab5906 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 Ne3e708fc9a8d4cbab5a47474fe2127f5 rdf:first sg:person.01360451164.07
161 rdf:rest N39a2821a6a84490ea7512da4bce3b1e7
162 Ne473f7b3332040d7a74a923310fa8275 schema:name pubmed_id
163 schema:value 28289991
164 rdf:type schema:PropertyValue
165 Ne9693f215a464eeb96efc469a436d69a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Predictive Value of Tests
167 rdf:type schema:DefinedTerm
168 Nf444f4c935744d10a5cd50fc25dae3c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Middle Aged
170 rdf:type schema:DefinedTerm
171 Nf82b40e8fe494516b4b9680efb1a51b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Signal-To-Noise Ratio
173 rdf:type schema:DefinedTerm
174 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
175 schema:name Medical and Health Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
178 schema:name Cardiorespiratory Medicine and Haematology
179 rdf:type schema:DefinedTerm
180 sg:journal.1025429 schema:issn 1569-5794
181 1573-0743
182 schema:name The International Journal of Cardiovascular Imaging
183 rdf:type schema:Periodical
184 sg:person.01017406664.97 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
185 schema:familyName Fan
186 schema:givenName Zhanming
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017406664.97
188 rdf:type schema:Person
189 sg:person.01022200437.21 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
190 schema:familyName Ma
191 schema:givenName Xiaohai
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022200437.21
193 rdf:type schema:Person
194 sg:person.01127454361.85 schema:affiliation https://www.grid.ac/institutes/grid.1032.0
195 schema:familyName Sun
196 schema:givenName Zhonghua
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127454361.85
198 rdf:type schema:Person
199 sg:person.013211040741.34 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
200 schema:familyName Liu
201 schema:givenName Dongting
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013211040741.34
203 rdf:type schema:Person
204 sg:person.01360451164.07 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
205 schema:familyName Zhao
206 schema:givenName Lei
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360451164.07
208 rdf:type schema:Person
209 sg:person.015606262537.26 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
210 schema:familyName Chen
211 schema:givenName Hui
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015606262537.26
213 rdf:type schema:Person
214 sg:person.0666501601.71 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
215 schema:familyName Liu
216 schema:givenName Jiayi
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666501601.71
218 rdf:type schema:Person
219 sg:person.0713154075.07 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
220 schema:familyName Xu
221 schema:givenName Lei
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07
223 rdf:type schema:Person
224 sg:pub.10.1007/s00330-001-1242-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026541193
225 https://doi.org/10.1007/s00330-001-1242-9
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s00330-012-2563-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034759897
228 https://doi.org/10.1007/s00330-012-2563-6
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s10554-016-0963-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035623874
231 https://doi.org/10.1007/s10554-016-0963-4
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s12265-009-9147-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495509
234 https://doi.org/10.1007/s12265-009-9147-0
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1532-429x-11-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601008
237 https://doi.org/10.1186/1532-429x-11-6
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1532-429x-12-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047423650
240 https://doi.org/10.1186/1532-429x-12-49
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/s12880-015-0099-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009705658
243 https://doi.org/10.1186/s12880-015-0099-3
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/s12968-014-0085-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032558001
246 https://doi.org/10.1186/s12968-014-0085-x
247 rdf:type schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1075091120 schema:CreativeWork
249 https://app.dimensions.ai/details/publication/pub.1078144005 schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1078148282 schema:CreativeWork
251 https://doi.org/10.1016/j.ahj.2003.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023992474
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.ejrad.2008.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015197889
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jacc.2004.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006729364
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.jacc.2010.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022168618
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.jacc.2010.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029186698
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.jcmg.2010.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011769114
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.jcmg.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013051756
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.jjcc.2011.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008667395
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/s0140-6736(03)12389-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042369788
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/s0735-1097(02)02602-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036776850
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1081/jcmr-200053623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058431826
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1093/ehjci/jes125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023356687
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1097/00004424-200205000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023228292
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1097/01.rli.0000184756.66360.d3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047558970
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1097/rli.0000000000000076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047007609
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1097/rli.0b013e3182218dc3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046033507
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1097/rli.0b013e318236e354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008933829
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1136/heartjnl-2013-305471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048932208
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1148/radiol.10090526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008968852
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1148/radiol.2301021085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031094160
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1148/radiol.2483071579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012794096
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1148/radiology.218.3.r01mr12651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051851654
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1161/circheartfailure.109.854026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011278301
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1161/circimaging.110.950675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011684701
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1161/circulationaha.106.613414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008437538
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1161/circulationaha.113.007094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041546736
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1259/bjr.20140307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565363
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1259/bjr/34610669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569157
306 rdf:type schema:CreativeWork
307 https://doi.org/10.2214/ajr.11.7118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069301887
308 rdf:type schema:CreativeWork
309 https://www.grid.ac/institutes/grid.1032.0 schema:alternateName Curtin University
310 schema:name Department of Medical Radiation Sciences, Curtin University, 6102, Perth, Australia
311 rdf:type schema:Organization
312 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
313 schema:name Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, 100029, Beijing, China
314 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...