Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10-07

AUTHORS

Tetsuma Kawaji, Hiroki Shiomi, Hiroshi Morishita, Takeshi Morimoto, Charles A. Taylor, Shotaro Kanao, Koji Koizumi, Satoshi Kozawa, Kazuhisa Morihiro, Hirotoshi Watanabe, Junichi Tazaki, Masao Imai, Naritatsu Saito, Satoshi Shizuta, Koh Ono, Kaori Togashi, Takeshi Kimura

ABSTRACT

Non-invasive fractional flow reserve measured by coronary computed tomography angiography (FFRCT) has demonstrated a high diagnostic accuracy for detecting coronary artery disease (CAD) in selected patients in prior clinical trials. However, feasibility of FFRCT in unselected population have not been fully evaluated. Among 60 consecutive patients who had suspected significant CAD by coronary computed tomography angiography (CCTA) and were planned to undergo invasive coronary angiography, 48 patients were enrolled in this study comparing FFRCT with invasive fractional flow reserve (FFR) without any exclusion criteria for the quality of CCTA image. FFRCT was measured in a blinded fashion by an independent core laboratory. FFRCT value was evaluable in 43 out of 48 (89.6 %) patients with high prevalence of severe calcification in CCTA images [calcium score (CS) >400: 40 %, and CS > 1000: 19 %). Per-vessel FFRCT value showed good correlation with invasive FFR value (Spearman’s rank correlation = 0.69, P < 0.001). The area under the receiver operator characteristics curve (AUC) of FFRCT was 0.87. Per-vessel accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 68.6, 92.9, 52.4, 56.5, and 91.7 %, respectively. Even in eight patients (13 vessels) with extremely severely calcified lesions (CS > 1000), per-vessel FFRCT value showed a diagnostic performance similar to that in patients with CS ≤ 1000 (Spearman’s rank correlation = 0.81, P < 0.001). FFRCT could be measured in the majority of consecutive patients who had suspected significant CAD by CCTA in real clinical practice and demonstrated good diagnostic performance for detecting hemodynamically significant CAD even in patients with extremely severe calcified vessels. More... »

PAGES

271-281

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-016-0995-9

DOI

http://dx.doi.org/10.1007/s10554-016-0995-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000326689

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27718139


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac Catheterization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computed Tomography Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fractional Flow Reserve, Myocardial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Calcification", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawaji", 
        "givenName": "Tetsuma", 
        "id": "sg:person.0755060175.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060175.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiomi", 
        "givenName": "Hiroki", 
        "id": "sg:person.01272152120.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272152120.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Morishita Heart Clinic, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Morishita Heart Clinic, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morishita", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272264.7", 
          "name": [
            "Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morimoto", 
        "givenName": "Takeshi", 
        "id": "sg:person.011273662612.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273662612.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, Stanford University, Stanford, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "HeartFlow Inc., Redwood City, USA", 
            "Department of Bioengineering, Stanford University, Stanford, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Charles A.", 
        "id": "sg:person.0765021400.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765021400.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanao", 
        "givenName": "Shotaro", 
        "id": "sg:person.0724611601.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724611601.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koizumi", 
        "givenName": "Koji", 
        "id": "sg:person.07716603673.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07716603673.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozawa", 
        "givenName": "Satoshi", 
        "id": "sg:person.07710714171.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07710714171.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Morishita Heart Clinic, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Morishita Heart Clinic, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morihiro", 
        "givenName": "Kazuhisa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Hirotoshi", 
        "id": "sg:person.0702040365.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702040365.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tazaki", 
        "givenName": "Junichi", 
        "id": "sg:person.01104142451.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104142451.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imai", 
        "givenName": "Masao", 
        "id": "sg:person.01336030644.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336030644.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saito", 
        "givenName": "Naritatsu", 
        "id": "sg:person.01354667527.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354667527.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shizuta", 
        "givenName": "Satoshi", 
        "id": "sg:person.0766661372.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661372.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Koh", 
        "id": "sg:person.01070333054.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070333054.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Togashi", 
        "givenName": "Kaori", 
        "id": "sg:person.01036055423.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036055423.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Takeshi", 
        "id": "sg:person.012173163322.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173163322.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-10-07", 
    "datePublishedReg": "2016-10-07", 
    "description": "Non-invasive fractional flow reserve measured by coronary computed tomography angiography (FFRCT) has demonstrated a high diagnostic accuracy for detecting coronary artery disease (CAD) in selected patients in prior clinical trials. However, feasibility of FFRCT in unselected population have not been fully evaluated. Among 60 consecutive patients who had suspected significant CAD by coronary computed tomography angiography (CCTA) and were planned to undergo invasive coronary angiography, 48 patients were enrolled in this study comparing FFRCT with invasive fractional flow reserve (FFR) without any exclusion criteria for the quality of CCTA image. FFRCT was measured in a blinded fashion by an independent core laboratory. FFRCT value was evaluable in 43 out of 48 (89.6\u2009%) patients with high prevalence of severe calcification in CCTA images [calcium score (CS) >400: 40\u2009%, and CS\u2009>\u20091000: 19\u2009%). Per-vessel FFRCT value showed good correlation with invasive FFR value (Spearman\u2019s rank correlation\u2009=\u20090.69, P\u2009<\u20090.001). The area under the receiver operator characteristics curve (AUC) of FFRCT was 0.87. Per-vessel accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 68.6, 92.9, 52.4, 56.5, and 91.7\u2009%, respectively. Even in eight patients (13 vessels) with extremely severely calcified lesions (CS\u2009>\u20091000), per-vessel FFRCT value showed a diagnostic performance similar to that in patients with CS\u2009\u2264\u20091000 (Spearman\u2019s rank correlation\u2009=\u20090.81, P\u2009<\u20090.001). FFRCT could be measured in the majority of consecutive patients who had suspected significant CAD by CCTA in real clinical practice and demonstrated good diagnostic performance for detecting hemodynamically significant CAD even in patients with extremely severe calcified vessels.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10554-016-0995-9", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6140232", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "keywords": [
      "significant coronary artery disease", 
      "coronary artery disease", 
      "fractional flow reserve", 
      "real clinical practice", 
      "tomography angiography", 
      "FFRCT value", 
      "consecutive patients", 
      "flow reserve", 
      "diagnostic performance", 
      "clinical practice", 
      "predictive value", 
      "CCTA images", 
      "Coronary Computed Tomography Angiography", 
      "fractional flow reserve (FFR) measurement", 
      "prior clinical trials", 
      "independent core laboratory", 
      "invasive fractional flow reserve", 
      "non-invasive fractional flow reserve", 
      "invasive coronary angiography", 
      "computed tomography angiography", 
      "receiver operator characteristic curve", 
      "flow reserve measurements", 
      "negative predictive value", 
      "positive predictive value", 
      "operator characteristic curve", 
      "high diagnostic accuracy", 
      "good diagnostic performance", 
      "artery disease", 
      "coronary angiography", 
      "severe calcification", 
      "clinical trials", 
      "high prevalence", 
      "exclusion criteria", 
      "unselected population", 
      "blinded fashion", 
      "patients", 
      "core laboratory", 
      "FFR values", 
      "reserve measurements", 
      "angiography", 
      "FFRCT", 
      "diagnostic accuracy", 
      "vessel accuracy", 
      "characteristic curve", 
      "invasive FFR values", 
      "CCTA", 
      "lesions", 
      "prevalence", 
      "disease", 
      "calcification", 
      "trials", 
      "good correlation", 
      "vessels", 
      "majority", 
      "population", 
      "specificity", 
      "practice", 
      "criteria", 
      "feasibility", 
      "study", 
      "sensitivity", 
      "correlation", 
      "reserves", 
      "values", 
      "fashion", 
      "laboratory", 
      "quality", 
      "curves", 
      "CS", 
      "area", 
      "images", 
      "measurements", 
      "accuracy", 
      "performance"
    ], 
    "name": "Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice", 
    "pagination": "271-281", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000326689"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-016-0995-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27718139"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-016-0995-9", 
      "https://app.dimensions.ai/details/publication/pub.1000326689"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_695.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10554-016-0995-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0995-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0995-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0995-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0995-9'


 

This table displays all metadata directly associated to this object as RDF triples.

351 TRIPLES      20 PREDICATES      122 URIs      114 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-016-0995-9 schema:about N14da35adfb8c4706a61dc34b240278fe
2 N151b53e05675466da333ccadff62336c
3 N1f39bd09ea214b67bf3c7b2692275f8b
4 N23c78c3bd7f14142a625a0e018150821
5 N3041bcf2570e445bb42743739d162a56
6 N45df53c1d388446b9b04357d4f98ab45
7 N513be597b7e04cf597fc4eeac284f925
8 N51ab44a1a14943738bfbd6bbd51783e5
9 N55da794d0e46445a8fd231534571c670
10 N60fc73e4932e4d3096940653eb652a06
11 N6f6fd1d867a54086bd934e4a841ff339
12 N75a98c0f418a4d839ccd4ca7bd26162f
13 N75b3fd52bdb44ab28ad18f8e50145cad
14 N919cd45027c941d38c91a75488032f99
15 N99ecc9468dee413eb8d79821e41c10f7
16 Nd1349afecea045d9b19c55947db32bee
17 Nd3f72f2836ad4dd7adfdfb08529e981c
18 Ne057bd5dda1747329b09f32fab1e8423
19 Ne4335069c1fb4646b9e270d0189accd3
20 Ne47b9690ac4949a6b958f2d741a252b3
21 Nf2ebee763b9c4157863073e54b3b74ca
22 Nf5a098314f4b46b2882f1eec9e437236
23 Nfcfc9ea32bfd4d849c68f6a39d771fcb
24 anzsrc-for:11
25 anzsrc-for:1102
26 schema:author Nc0f4f025c8904667ad451a07b287eb9c
27 schema:datePublished 2016-10-07
28 schema:datePublishedReg 2016-10-07
29 schema:description Non-invasive fractional flow reserve measured by coronary computed tomography angiography (FFRCT) has demonstrated a high diagnostic accuracy for detecting coronary artery disease (CAD) in selected patients in prior clinical trials. However, feasibility of FFRCT in unselected population have not been fully evaluated. Among 60 consecutive patients who had suspected significant CAD by coronary computed tomography angiography (CCTA) and were planned to undergo invasive coronary angiography, 48 patients were enrolled in this study comparing FFRCT with invasive fractional flow reserve (FFR) without any exclusion criteria for the quality of CCTA image. FFRCT was measured in a blinded fashion by an independent core laboratory. FFRCT value was evaluable in 43 out of 48 (89.6 %) patients with high prevalence of severe calcification in CCTA images [calcium score (CS) >400: 40 %, and CS > 1000: 19 %). Per-vessel FFRCT value showed good correlation with invasive FFR value (Spearman’s rank correlation = 0.69, P < 0.001). The area under the receiver operator characteristics curve (AUC) of FFRCT was 0.87. Per-vessel accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 68.6, 92.9, 52.4, 56.5, and 91.7 %, respectively. Even in eight patients (13 vessels) with extremely severely calcified lesions (CS > 1000), per-vessel FFRCT value showed a diagnostic performance similar to that in patients with CS ≤ 1000 (Spearman’s rank correlation = 0.81, P < 0.001). FFRCT could be measured in the majority of consecutive patients who had suspected significant CAD by CCTA in real clinical practice and demonstrated good diagnostic performance for detecting hemodynamically significant CAD even in patients with extremely severe calcified vessels.
30 schema:genre article
31 schema:isAccessibleForFree false
32 schema:isPartOf N812f7ae730754608bf862350a8d310c8
33 Nd344b58188e54a0a91cf70fa30aada95
34 sg:journal.1025429
35 schema:keywords CCTA
36 CCTA images
37 CS
38 Coronary Computed Tomography Angiography
39 FFR values
40 FFRCT
41 FFRCT value
42 accuracy
43 angiography
44 area
45 artery disease
46 blinded fashion
47 calcification
48 characteristic curve
49 clinical practice
50 clinical trials
51 computed tomography angiography
52 consecutive patients
53 core laboratory
54 coronary angiography
55 coronary artery disease
56 correlation
57 criteria
58 curves
59 diagnostic accuracy
60 diagnostic performance
61 disease
62 exclusion criteria
63 fashion
64 feasibility
65 flow reserve
66 flow reserve measurements
67 fractional flow reserve
68 fractional flow reserve (FFR) measurement
69 good correlation
70 good diagnostic performance
71 high diagnostic accuracy
72 high prevalence
73 images
74 independent core laboratory
75 invasive FFR values
76 invasive coronary angiography
77 invasive fractional flow reserve
78 laboratory
79 lesions
80 majority
81 measurements
82 negative predictive value
83 non-invasive fractional flow reserve
84 operator characteristic curve
85 patients
86 performance
87 population
88 positive predictive value
89 practice
90 predictive value
91 prevalence
92 prior clinical trials
93 quality
94 real clinical practice
95 receiver operator characteristic curve
96 reserve measurements
97 reserves
98 sensitivity
99 severe calcification
100 significant coronary artery disease
101 specificity
102 study
103 tomography angiography
104 trials
105 unselected population
106 values
107 vessel accuracy
108 vessels
109 schema:name Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice
110 schema:pagination 271-281
111 schema:productId N6f798e9a5b634f24be5f3514d938ed50
112 N7ac46f87d3d146d2b28845538fbe8730
113 Nf537f27bed594666af6108787a959254
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326689
115 https://doi.org/10.1007/s10554-016-0995-9
116 schema:sdDatePublished 2022-09-02T15:59
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher Na85a3339432549d9899dec84e9203f4c
119 schema:url https://doi.org/10.1007/s10554-016-0995-9
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N0c875748307a424aa7c3613af3f16399 rdf:first sg:person.01336030644.36
124 rdf:rest N39524dd23d324d8489b281e17230c160
125 N14da35adfb8c4706a61dc34b240278fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name ROC Curve
127 rdf:type schema:DefinedTerm
128 N151b53e05675466da333ccadff62336c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Severity of Illness Index
130 rdf:type schema:DefinedTerm
131 N1f39bd09ea214b67bf3c7b2692275f8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Male
133 rdf:type schema:DefinedTerm
134 N23c78c3bd7f14142a625a0e018150821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Aged
136 rdf:type schema:DefinedTerm
137 N2d831fdd45264a20919951b48111babd rdf:first sg:person.0766661372.75
138 rdf:rest Nb4e21db4d3494b0c98f5ecb3c0c3f520
139 N3041bcf2570e445bb42743739d162a56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Coronary Artery Disease
141 rdf:type schema:DefinedTerm
142 N35fa01d4266d45f39133378a1831ef09 rdf:first Nd5ea9d516ab94d338c59e76cfec435ae
143 rdf:rest Nff1feac5d54f48dd967dc9691156ef6f
144 N39524dd23d324d8489b281e17230c160 rdf:first sg:person.01354667527.07
145 rdf:rest N2d831fdd45264a20919951b48111babd
146 N45df53c1d388446b9b04357d4f98ab45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Cardiac Catheterization
148 rdf:type schema:DefinedTerm
149 N513be597b7e04cf597fc4eeac284f925 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Myocardial Perfusion Imaging
151 rdf:type schema:DefinedTerm
152 N51ab44a1a14943738bfbd6bbd51783e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Middle Aged
154 rdf:type schema:DefinedTerm
155 N55da794d0e46445a8fd231534571c670 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Female
157 rdf:type schema:DefinedTerm
158 N5bb3d21cbdb249a88b54381e968d2aa5 schema:affiliation grid-institutes:None
159 schema:familyName Morihiro
160 schema:givenName Kazuhisa
161 rdf:type schema:Person
162 N60fc73e4932e4d3096940653eb652a06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Radiographic Image Interpretation, Computer-Assisted
164 rdf:type schema:DefinedTerm
165 N6a8943f8f28e4c9eb733304337c0c46e rdf:first sg:person.0765021400.58
166 rdf:rest Na4d350049abf4e0d8a68037929db8156
167 N6f6fd1d867a54086bd934e4a841ff339 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Computed Tomography Angiography
169 rdf:type schema:DefinedTerm
170 N6f798e9a5b634f24be5f3514d938ed50 schema:name doi
171 schema:value 10.1007/s10554-016-0995-9
172 rdf:type schema:PropertyValue
173 N75a98c0f418a4d839ccd4ca7bd26162f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Reproducibility of Results
175 rdf:type schema:DefinedTerm
176 N75b3fd52bdb44ab28ad18f8e50145cad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Coronary Vessels
178 rdf:type schema:DefinedTerm
179 N7ac46f87d3d146d2b28845538fbe8730 schema:name dimensions_id
180 schema:value pub.1000326689
181 rdf:type schema:PropertyValue
182 N7e081af0888940b4ac0245f1e217773d rdf:first sg:person.07716603673.24
183 rdf:rest Nef02761059cf46899718b94b154f4666
184 N812f7ae730754608bf862350a8d310c8 schema:issueNumber 2
185 rdf:type schema:PublicationIssue
186 N919cd45027c941d38c91a75488032f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Area Under Curve
188 rdf:type schema:DefinedTerm
189 N99ecc9468dee413eb8d79821e41c10f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Predictive Value of Tests
191 rdf:type schema:DefinedTerm
192 Na34ee5e9c82045499d136d384a0bd037 rdf:first N5bb3d21cbdb249a88b54381e968d2aa5
193 rdf:rest Ne555c69ee29b4f3396f9a7c656c99945
194 Na4d350049abf4e0d8a68037929db8156 rdf:first sg:person.0724611601.76
195 rdf:rest N7e081af0888940b4ac0245f1e217773d
196 Na85a3339432549d9899dec84e9203f4c schema:name Springer Nature - SN SciGraph project
197 rdf:type schema:Organization
198 Nb4e21db4d3494b0c98f5ecb3c0c3f520 rdf:first sg:person.01070333054.04
199 rdf:rest Nc986071166034073a45dd40479ca820a
200 Nb7d971c7c8ad43b58aa781946c5895c3 rdf:first sg:person.012173163322.36
201 rdf:rest rdf:nil
202 Nc0f4f025c8904667ad451a07b287eb9c rdf:first sg:person.0755060175.71
203 rdf:rest Nd101c63736f44d58b265596c916aaa90
204 Nc986071166034073a45dd40479ca820a rdf:first sg:person.01036055423.23
205 rdf:rest Nb7d971c7c8ad43b58aa781946c5895c3
206 Nd101c63736f44d58b265596c916aaa90 rdf:first sg:person.01272152120.47
207 rdf:rest N35fa01d4266d45f39133378a1831ef09
208 Nd1349afecea045d9b19c55947db32bee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Prognosis
210 rdf:type schema:DefinedTerm
211 Nd344b58188e54a0a91cf70fa30aada95 schema:volumeNumber 33
212 rdf:type schema:PublicationVolume
213 Nd3f72f2836ad4dd7adfdfb08529e981c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Prospective Studies
215 rdf:type schema:DefinedTerm
216 Nd5ea9d516ab94d338c59e76cfec435ae schema:affiliation grid-institutes:None
217 schema:familyName Morishita
218 schema:givenName Hiroshi
219 rdf:type schema:Person
220 Ne057bd5dda1747329b09f32fab1e8423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Humans
222 rdf:type schema:DefinedTerm
223 Ne4335069c1fb4646b9e270d0189accd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Vascular Calcification
225 rdf:type schema:DefinedTerm
226 Ne47b9690ac4949a6b958f2d741a252b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Feasibility Studies
228 rdf:type schema:DefinedTerm
229 Ne555c69ee29b4f3396f9a7c656c99945 rdf:first sg:person.0702040365.70
230 rdf:rest Ne59fa13366c64381bccdcfbe006aaa74
231 Ne59fa13366c64381bccdcfbe006aaa74 rdf:first sg:person.01104142451.94
232 rdf:rest N0c875748307a424aa7c3613af3f16399
233 Nef02761059cf46899718b94b154f4666 rdf:first sg:person.07710714171.43
234 rdf:rest Na34ee5e9c82045499d136d384a0bd037
235 Nf2ebee763b9c4157863073e54b3b74ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
236 schema:name Cross-Sectional Studies
237 rdf:type schema:DefinedTerm
238 Nf537f27bed594666af6108787a959254 schema:name pubmed_id
239 schema:value 27718139
240 rdf:type schema:PropertyValue
241 Nf5a098314f4b46b2882f1eec9e437236 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
242 schema:name Fractional Flow Reserve, Myocardial
243 rdf:type schema:DefinedTerm
244 Nfcfc9ea32bfd4d849c68f6a39d771fcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
245 schema:name Coronary Angiography
246 rdf:type schema:DefinedTerm
247 Nff1feac5d54f48dd967dc9691156ef6f rdf:first sg:person.011273662612.03
248 rdf:rest N6a8943f8f28e4c9eb733304337c0c46e
249 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
250 schema:name Medical and Health Sciences
251 rdf:type schema:DefinedTerm
252 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
253 schema:name Cardiorespiratory Medicine and Haematology
254 rdf:type schema:DefinedTerm
255 sg:grant.6140232 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-016-0995-9
256 rdf:type schema:MonetaryGrant
257 sg:journal.1025429 schema:issn 1569-5794
258 1573-0743
259 schema:name The International Journal of Cardiovascular Imaging
260 schema:publisher Springer Nature
261 rdf:type schema:Periodical
262 sg:person.01036055423.23 schema:affiliation grid-institutes:None
263 schema:familyName Togashi
264 schema:givenName Kaori
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036055423.23
266 rdf:type schema:Person
267 sg:person.01070333054.04 schema:affiliation grid-institutes:grid.258799.8
268 schema:familyName Ono
269 schema:givenName Koh
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070333054.04
271 rdf:type schema:Person
272 sg:person.01104142451.94 schema:affiliation grid-institutes:grid.258799.8
273 schema:familyName Tazaki
274 schema:givenName Junichi
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104142451.94
276 rdf:type schema:Person
277 sg:person.011273662612.03 schema:affiliation grid-institutes:grid.272264.7
278 schema:familyName Morimoto
279 schema:givenName Takeshi
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273662612.03
281 rdf:type schema:Person
282 sg:person.012173163322.36 schema:affiliation grid-institutes:grid.258799.8
283 schema:familyName Kimura
284 schema:givenName Takeshi
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173163322.36
286 rdf:type schema:Person
287 sg:person.01272152120.47 schema:affiliation grid-institutes:grid.258799.8
288 schema:familyName Shiomi
289 schema:givenName Hiroki
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272152120.47
291 rdf:type schema:Person
292 sg:person.01336030644.36 schema:affiliation grid-institutes:grid.258799.8
293 schema:familyName Imai
294 schema:givenName Masao
295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336030644.36
296 rdf:type schema:Person
297 sg:person.01354667527.07 schema:affiliation grid-institutes:grid.258799.8
298 schema:familyName Saito
299 schema:givenName Naritatsu
300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354667527.07
301 rdf:type schema:Person
302 sg:person.0702040365.70 schema:affiliation grid-institutes:grid.258799.8
303 schema:familyName Watanabe
304 schema:givenName Hirotoshi
305 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702040365.70
306 rdf:type schema:Person
307 sg:person.0724611601.76 schema:affiliation grid-institutes:None
308 schema:familyName Kanao
309 schema:givenName Shotaro
310 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724611601.76
311 rdf:type schema:Person
312 sg:person.0755060175.71 schema:affiliation grid-institutes:grid.258799.8
313 schema:familyName Kawaji
314 schema:givenName Tetsuma
315 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060175.71
316 rdf:type schema:Person
317 sg:person.0765021400.58 schema:affiliation grid-institutes:grid.168010.e
318 schema:familyName Taylor
319 schema:givenName Charles A.
320 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765021400.58
321 rdf:type schema:Person
322 sg:person.0766661372.75 schema:affiliation grid-institutes:grid.258799.8
323 schema:familyName Shizuta
324 schema:givenName Satoshi
325 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661372.75
326 rdf:type schema:Person
327 sg:person.07710714171.43 schema:affiliation grid-institutes:None
328 schema:familyName Kozawa
329 schema:givenName Satoshi
330 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07710714171.43
331 rdf:type schema:Person
332 sg:person.07716603673.24 schema:affiliation grid-institutes:None
333 schema:familyName Koizumi
334 schema:givenName Koji
335 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07716603673.24
336 rdf:type schema:Person
337 grid-institutes:None schema:alternateName Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA
338 Morishita Heart Clinic, Kyoto, Japan
339 schema:name Department of Radiology, Graduate School of Medicine, Kyoto University, Kyoto, USA
340 Morishita Heart Clinic, Kyoto, Japan
341 rdf:type schema:Organization
342 grid-institutes:grid.168010.e schema:alternateName Department of Bioengineering, Stanford University, Stanford, USA
343 schema:name Department of Bioengineering, Stanford University, Stanford, USA
344 HeartFlow Inc., Redwood City, USA
345 rdf:type schema:Organization
346 grid-institutes:grid.258799.8 schema:alternateName Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
347 schema:name Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
348 rdf:type schema:Organization
349 grid-institutes:grid.272264.7 schema:alternateName Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
350 schema:name Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
351 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...