Ontology type: schema:ScholarlyArticle
2017-02
AUTHORSJesper J. Linde, Mathias Sørgaard, Jørgen T. Kühl, Jens D. Hove, Henning Kelbæk, Walter B. Nielsen, Klaus F. Kofoed
ABSTRACTThe prognostic implications of myocardial computed tomography perfusion (CTP) analyses are unknown. In this sub-study to the CATCH-trial we evaluate the ability of adenosine stress CTP findings to predict mid-term major adverse cardiac events (MACE). In 240 patients with acute-onset chest pain, yet normal electrocardiograms and troponins, a clinically blinded adenosine stress CTP scan was performed in addition to conventional diagnostic evaluation. A reversible perfusion defect (PD) was found in 38 patients (16 %) and during a median follow-up of 19 months (range 12-22 months) 25 patients (10 %) suffered a MACE (cardiac death, non-fatal myocardial infarction and revascularizations). Accuracy for the prediction of MACE expressed as the area under curve (AUC) on receiver-operating characteristic curves was 0.88 (0.83-0.92) for visual assessment of a PD and 0.80 (0.73-0.85) for stress TPR (transmural perfusion ratio). After adjustment for the pretest probability of obstructive coronary artery disease, both detection of a PD and stress TPR were significantly associated with MACE with an adjusted hazard ratio of 39 (95 % confidence interval 11-134), p < 0.0001, for visual interpretation and 0.99 (0.98-0.99) for stress TPR, p < 0.0001. Patients with a PD volume covering >10 % of the LV myocardium had a worse prognosis compared to patients with a PD covering <10 % of the LV myocardium, p = 0.0002. The optimal cut-off value of the myocardial PD extent to predict MACE was 5.3 % of the left ventricle [sensitivity 84 % (64-96), specificity 95 % (91-97)]. Myocardial CT perfusion parameters predict mid-term clinical outcome in patients with recent acute-onset chest pain. More... »
PAGES261-270
http://scigraph.springernature.com/pub.10.1007/s10554-016-0994-x
DOIhttp://dx.doi.org/10.1007/s10554-016-0994-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037264097
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/27718140
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cardiorespiratory Medicine and Haematology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adenosine",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Angina, Unstable",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Area Under Curve",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Coronary Circulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Coronary Vessels",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Multidetector Computed Tomography",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Myocardial Perfusion Imaging",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Predictive Value of Tests",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Prognosis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "ROC Curve",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Randomized Controlled Trials as Topic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Risk Factors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Time Factors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Vasodilator Agents",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Department of Cardiology, Hvidovre University Hospital, University of Copenhagen, Kettegaard alle 30, 2650, Hvidovre, Denmark",
"Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark"
],
"type": "Organization"
},
"familyName": "Linde",
"givenName": "Jesper J.",
"id": "sg:person.0706137677.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706137677.23"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark"
],
"type": "Organization"
},
"familyName": "S\u00f8rgaard",
"givenName": "Mathias",
"id": "sg:person.01105563312.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105563312.02"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark"
],
"type": "Organization"
},
"familyName": "K\u00fchl",
"givenName": "J\u00f8rgen T.",
"id": "sg:person.01001370400.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001370400.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hvidovre Hospital",
"id": "https://www.grid.ac/institutes/grid.411905.8",
"name": [
"Department of Cardiology, Hvidovre University Hospital, University of Copenhagen, Kettegaard alle 30, 2650, Hvidovre, Denmark",
"Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark"
],
"type": "Organization"
},
"familyName": "Hove",
"givenName": "Jens D.",
"id": "sg:person.01136733117.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136733117.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Roskilde Sygehus",
"id": "https://www.grid.ac/institutes/grid.416059.f",
"name": [
"Department of Cardiology, Roskilde Sygehus, Roskilde, Denmark"
],
"type": "Organization"
},
"familyName": "Kelb\u00e6k",
"givenName": "Henning",
"id": "sg:person.0771034557.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771034557.12"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Cardiology, Hvidovre University Hospital, University of Copenhagen, Kettegaard alle 30, 2650, Hvidovre, Denmark"
],
"type": "Organization"
},
"familyName": "Nielsen",
"givenName": "Walter B.",
"id": "sg:person.01366371401.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366371401.43"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark",
"Department of Radiology, The Diagnostic Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark"
],
"type": "Organization"
},
"familyName": "Kofoed",
"givenName": "Klaus F.",
"id": "sg:person.016452166277.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452166277.03"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.amjcard.2008.01.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001103376"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2012.09.043",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003479103"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jcmg.2012.09.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005767876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jcmg.2011.04.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006383694"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijcard.2009.04.024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008395873"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jcmg.2015.01.022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014420282"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/eurheartj/ehu278",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015239538"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.114.002666",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016279137"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.114.002666",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016279137"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.113.000035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016378759"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.113.000035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016378759"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejm197906143002402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019126751"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jcmg.2015.07.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019127279"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2006.05.080",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021438565"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2010.06.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022495521"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12350-014-9952-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026304711",
"https://doi.org/10.1007/s12350-014-9952-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12350-014-9952-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026304711",
"https://doi.org/10.1007/s12350-014-9952-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2012.12.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028146716"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1136/heartjnl-2013-303794",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028907300"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/eurheartj/eht488",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031147351"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijcard.2013.08.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031609618"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijcard.2014.03.209",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033854548"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2006.04.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033946852"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.110.961250",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035388281"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.110.961250",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035388281"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.108.813766",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035827179"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.108.813766",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035827179"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2013.03.088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036161144"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jcct.2011.10.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037971385"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmoa0807611",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044990023"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/eurheartj/ehr014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050067831"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10554-014-0530-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050402669",
"https://doi.org/10.1007/s10554-014-0530-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circulationaha.109.192519",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052966175"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1075232014",
"type": "CreativeWork"
}
],
"datePublished": "2017-02",
"datePublishedReg": "2017-02-01",
"description": "The prognostic implications of myocardial computed tomography perfusion (CTP) analyses are unknown. In this sub-study to the CATCH-trial we evaluate the ability of adenosine stress CTP findings to predict mid-term major adverse cardiac events (MACE). In 240 patients with acute-onset chest pain, yet normal electrocardiograms and troponins, a clinically blinded adenosine stress CTP scan was performed in addition to conventional diagnostic evaluation. A reversible perfusion defect (PD) was found in 38 patients (16\u2009%) and during a median follow-up of 19 months (range 12-22 months) 25 patients (10\u2009%) suffered a MACE (cardiac death, non-fatal myocardial infarction and revascularizations). Accuracy for the prediction of MACE expressed as the area under curve (AUC) on receiver-operating characteristic curves was 0.88 (0.83-0.92) for visual assessment of a PD and 0.80 (0.73-0.85) for stress TPR (transmural perfusion ratio). After adjustment for the pretest probability of obstructive coronary artery disease, both detection of a PD and stress TPR were significantly associated with MACE with an adjusted hazard ratio of 39 (95\u2009% confidence interval 11-134), p\u2009<\u20090.0001, for visual interpretation and 0.99 (0.98-0.99) for stress TPR, p\u2009<\u20090.0001. Patients with a PD volume covering >10\u2009% of the LV myocardium had a worse prognosis compared to patients with a PD covering <10\u2009% of the LV myocardium, p\u2009=\u20090.0002. The optimal cut-off value of the myocardial PD extent to predict MACE was 5.3\u2009% of the left ventricle [sensitivity 84\u2009% (64-96), specificity 95\u2009% (91-97)]. Myocardial CT perfusion parameters predict mid-term clinical outcome in patients with recent acute-onset chest pain.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10554-016-0994-x",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1025429",
"issn": [
"1569-5794",
"1573-0743"
],
"name": "The International Journal of Cardiovascular Imaging",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "33"
}
],
"name": "Prediction of clinical outcome by myocardial CT perfusion in patients with low-risk unstable angina pectoris",
"pagination": "261-270",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b18368c5c797ac92bc5f86bb3d5be208d179340f292d91849af8862155b26740"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"27718140"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"100969716"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10554-016-0994-x"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037264097"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10554-016-0994-x",
"https://app.dimensions.ai/details/publication/pub.1037264097"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10554-016-0994-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0994-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0994-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0994-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-016-0994-x'
This table displays all metadata directly associated to this object as RDF triples.
291 TRIPLES
21 PREDICATES
77 URIs
40 LITERALS
28 BLANK NODES