Factors affecting computed tomography image quality for assessment of mechanical aortic valves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12-01

AUTHORS

Young Joo Suh, Young Jin Kim, Yoo Jin Hong, Hye-Jeong Lee, Jin Hur, Sae Rom Hong, Dong Jin Im, Yun Jung Kim, Byoung Wook Choi

ABSTRACT

Evaluating mechanical valves with computed tomography (CT) can be problematic because artifacts from the metallic components of valves can hamper image quality. The purpose of this study was to determine factors affecting the image quality of cardiac CT to improve assessment of mechanical aortic valves. A total of 144 patients who underwent aortic valve replacement with mechanical valves (ten different types) and who underwent cardiac CT were included. Using a four-point grading system, the image quality of the CT scans was assessed for visibility of the valve leaflets and the subvalvular regions. Data regarding the type of mechanical valve, tube voltage, average heart rate (HR), and HR variability during CT scanning were compared between the non-diagnostic (overall image quality score ≤2) and diagnostic (overall image quality score >2) image quality groups. Logistic regression analyses were performed to identify predictors of non-diagnostic image quality. The percentage of valve types that incorporated a cobalt-chrome component (two types in total) and HR variability were significantly higher in the non-diagnostic image group than in the diagnostic group (P < 0.001 and P = 0.013, respectively). The average HR and tube voltage were not significantly different between the two groups (P > 0.05). Valve type was the only independent predictor of non-diagnostic quality. The CT image quality for patients with mechanical aortic valves differed significantly depending on the type of mechanical valve used and on the degree of HR variability. More... »

PAGES

63-71

References to SciGraph publications

  • 2014-01-29. The impact of a new model-based iterative reconstruction algorithm on prosthetic heart valve related artifacts at reduced radiation dose MDCT in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2011-01-29. Prosthetic heart valve assessment with multidetector-row CT: imaging characteristics of 91 valves in 83 patients in EUROPEAN RADIOLOGY
  • 2011-12-30. Prospective ECG triggering reduces prosthetic heart valve-induced artefacts compared with retrospective ECG gating on 256-slice CT in EUROPEAN RADIOLOGY
  • 2012-04-05. Artifact reduction strategies for prosthetic heart valve CT imaging in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2009-05-09. Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT in EUROPEAN RADIOLOGY
  • 2010-10-06. Evaluation of coronary artery in-stent restenosis with prospectively ECG-triggered axial CT angiography versus retrospective technique: a phantom study in LA RADIOLOGIA MEDICA
  • 2011-05-15. Multidetector CT imaging of mechanical prosthetic heart valves: quantification of artifacts with a pulsatile in-vitro model in EUROPEAN RADIOLOGY
  • 1999-02. Artefacts in spiral-CT images and their relation to pitch and subject morphology in EUROPEAN RADIOLOGY
  • 2008-11-27. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard in EUROPEAN RADIOLOGY
  • 2012-10-26. Dual-source coronary CT angiography in patients with high heart rates using a prospectively ECG-triggered axial mode at end-systole in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10554-015-0817-5

    DOI

    http://dx.doi.org/10.1007/s10554-015-0817-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008675242

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26626457


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aortic Valve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artifacts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cardiac-Gated Imaging Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Contrast Media", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrocardiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Rate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Valve Prosthesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Valve Prosthesis Implantation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Iopamidol", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prosthesis Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Republic of Korea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suh", 
            "givenName": "Young Joo", 
            "id": "sg:person.015766550713.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766550713.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Young Jin", 
            "id": "sg:person.01143557676.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Yoo Jin", 
            "id": "sg:person.01014245442.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Hye-Jeong", 
            "id": "sg:person.01160231265.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hur", 
            "givenName": "Jin", 
            "id": "sg:person.0631275763.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Sae Rom", 
            "id": "sg:person.01146225770.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146225770.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Im", 
            "givenName": "Dong Jin", 
            "id": "sg:person.0724201617.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Yun Jung", 
            "id": "sg:person.01130371063.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130371063.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.415562.1", 
              "name": [
                "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Byoung Wook", 
            "id": "sg:person.01101305576.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00330-008-1232-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028204967", 
              "https://doi.org/10.1007/s00330-008-1232-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003300050673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012880990", 
              "https://doi.org/10.1007/s003300050673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11547-010-0599-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002855478", 
              "https://doi.org/10.1007/s11547-010-0599-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-011-2358-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007818475", 
              "https://doi.org/10.1007/s00330-011-2358-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-012-0041-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026490518", 
              "https://doi.org/10.1007/s10554-012-0041-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-009-1419-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047804156", 
              "https://doi.org/10.1007/s00330-009-1419-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-011-2068-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050838663", 
              "https://doi.org/10.1007/s00330-011-2068-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-011-2146-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000693840", 
              "https://doi.org/10.1007/s00330-011-2146-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-014-0379-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014728933", 
              "https://doi.org/10.1007/s10554-014-0379-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-012-0142-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008957209", 
              "https://doi.org/10.1007/s10554-012-0142-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12-01", 
        "datePublishedReg": "2015-12-01", 
        "description": "Evaluating mechanical valves with computed tomography (CT) can be problematic because artifacts from the metallic components of valves can hamper image quality. The purpose of this study was to determine factors affecting the image quality of cardiac CT to improve assessment of mechanical aortic valves. A total of 144 patients who underwent aortic valve replacement with mechanical valves (ten different types) and who underwent cardiac CT were included. Using a four-point grading system, the image quality of the CT scans was assessed for visibility of the valve leaflets and the subvalvular regions. Data regarding the type of mechanical valve, tube voltage, average heart rate (HR), and HR variability during CT scanning were compared between the non-diagnostic (overall image quality score \u22642) and diagnostic (overall image quality score >2) image quality groups. Logistic regression analyses were performed to identify predictors of non-diagnostic image quality. The percentage of valve types that incorporated a cobalt-chrome component (two types in total) and HR variability were significantly higher in the non-diagnostic image group than in the diagnostic group (P\u00a0<\u00a00.001 and P\u00a0=\u00a00.013, respectively). The average HR and tube voltage were not significantly different between the two groups (P\u00a0>\u00a00.05). Valve type was the only independent predictor of non-diagnostic quality. The CT image quality for patients with mechanical aortic valves differed significantly depending on the type of mechanical valve used and on the degree of HR variability.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10554-015-0817-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1025429", 
            "issn": [
              "1569-5794", 
              "1573-0743"
            ], 
            "name": "The International Journal of Cardiovascular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "mechanical aortic valve", 
          "cardiac computed tomography", 
          "computed tomography", 
          "mechanical valves", 
          "aortic valve", 
          "heart rate", 
          "average heart rate", 
          "HR variability", 
          "non-diagnostic image quality", 
          "aortic valve replacement", 
          "only independent predictor", 
          "four-point grading system", 
          "logistic regression analysis", 
          "non-diagnostic quality", 
          "valve replacement", 
          "independent predictors", 
          "CT scan", 
          "subvalvular region", 
          "diagnostic groups", 
          "tube voltage", 
          "CT scanning", 
          "grading system", 
          "valve leaflets", 
          "valve type", 
          "tomography image quality", 
          "patients", 
          "regression analysis", 
          "CT image quality", 
          "predictors", 
          "group", 
          "valve", 
          "image quality", 
          "assessment", 
          "tomography", 
          "scans", 
          "factors", 
          "total", 
          "quality groups", 
          "quality", 
          "leaflets", 
          "percentage", 
          "types", 
          "replacement", 
          "variability", 
          "study", 
          "rate", 
          "scanning", 
          "purpose", 
          "data", 
          "image groups", 
          "components", 
          "degree", 
          "analysis", 
          "region", 
          "system", 
          "visibility", 
          "artifacts", 
          "metallic components", 
          "voltage"
        ], 
        "name": "Factors affecting computed tomography image quality for assessment of mechanical aortic valves", 
        "pagination": "63-71", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008675242"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10554-015-0817-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26626457"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10554-015-0817-5", 
          "https://app.dimensions.ai/details/publication/pub.1008675242"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_653.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10554-015-0817-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0817-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0817-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0817-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0817-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    304 TRIPLES      21 PREDICATES      116 URIs      98 LITERALS      29 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10554-015-0817-5 schema:about N0b80b632127a47feaea2294ea2780db4
    2 N0eb173adb9824088b570657eac0cf1a6
    3 N2421d831811549cfbcabe65a5a9b1270
    4 N2d91d1c46c8a44f3affd48ff5b55c80a
    5 N3bf27a215ecd481c9137b31d74432126
    6 N5ee06c6aa5444588973d832c68877491
    7 N60032f9fc22a479c9969a4347781c5b0
    8 N661b9daea55048bd85514035795116ff
    9 N74e8efa96aa7439fa9cc71ef6e2efd91
    10 N8ba2c5906f0c4c63878cce39c3225c1c
    11 N92f16eda864142d4861d11c9a6ad4d5b
    12 N99b95d9f3b8e47f680c4196d674e220d
    13 N9efa4b0658a143e9bd82793378611e91
    14 Na4edcc07624a49aaa2a128f7893835ab
    15 Nae877e9a1e0a42069ad058d2a67b3a9f
    16 Naf0f2b4dcc1042af88b3934ec6d428dc
    17 Nb08eff8d07d7425c9238cb8bd551c2ce
    18 Ndf90f4bb5be24570b9f9e932d3f04382
    19 Ne10fa5eed1a14423a235988628aa74f2
    20 Ne2ccaae4fb184e6982f28ebf45c18ede
    21 Nec7c408c320740f39623c5ea3565c905
    22 Nf7e1bda5aed54335b73d645affd36714
    23 anzsrc-for:11
    24 anzsrc-for:1102
    25 schema:author N547312e81e254c059f622de76fca02f3
    26 schema:citation sg:pub.10.1007/s00330-008-1232-2
    27 sg:pub.10.1007/s00330-009-1419-1
    28 sg:pub.10.1007/s00330-011-2068-8
    29 sg:pub.10.1007/s00330-011-2146-y
    30 sg:pub.10.1007/s00330-011-2358-1
    31 sg:pub.10.1007/s003300050673
    32 sg:pub.10.1007/s10554-012-0041-5
    33 sg:pub.10.1007/s10554-012-0142-1
    34 sg:pub.10.1007/s10554-014-0379-y
    35 sg:pub.10.1007/s11547-010-0599-8
    36 schema:datePublished 2015-12-01
    37 schema:datePublishedReg 2015-12-01
    38 schema:description Evaluating mechanical valves with computed tomography (CT) can be problematic because artifacts from the metallic components of valves can hamper image quality. The purpose of this study was to determine factors affecting the image quality of cardiac CT to improve assessment of mechanical aortic valves. A total of 144 patients who underwent aortic valve replacement with mechanical valves (ten different types) and who underwent cardiac CT were included. Using a four-point grading system, the image quality of the CT scans was assessed for visibility of the valve leaflets and the subvalvular regions. Data regarding the type of mechanical valve, tube voltage, average heart rate (HR), and HR variability during CT scanning were compared between the non-diagnostic (overall image quality score ≤2) and diagnostic (overall image quality score >2) image quality groups. Logistic regression analyses were performed to identify predictors of non-diagnostic image quality. The percentage of valve types that incorporated a cobalt-chrome component (two types in total) and HR variability were significantly higher in the non-diagnostic image group than in the diagnostic group (P < 0.001 and P = 0.013, respectively). The average HR and tube voltage were not significantly different between the two groups (P > 0.05). Valve type was the only independent predictor of non-diagnostic quality. The CT image quality for patients with mechanical aortic valves differed significantly depending on the type of mechanical valve used and on the degree of HR variability.
    39 schema:genre article
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N42080a56eef24511ae39d1877120b968
    42 N749d614ea8864f9fa8d38474808ae9a2
    43 sg:journal.1025429
    44 schema:keywords CT image quality
    45 CT scan
    46 CT scanning
    47 HR variability
    48 analysis
    49 aortic valve
    50 aortic valve replacement
    51 artifacts
    52 assessment
    53 average heart rate
    54 cardiac computed tomography
    55 components
    56 computed tomography
    57 data
    58 degree
    59 diagnostic groups
    60 factors
    61 four-point grading system
    62 grading system
    63 group
    64 heart rate
    65 image groups
    66 image quality
    67 independent predictors
    68 leaflets
    69 logistic regression analysis
    70 mechanical aortic valve
    71 mechanical valves
    72 metallic components
    73 non-diagnostic image quality
    74 non-diagnostic quality
    75 only independent predictor
    76 patients
    77 percentage
    78 predictors
    79 purpose
    80 quality
    81 quality groups
    82 rate
    83 region
    84 regression analysis
    85 replacement
    86 scanning
    87 scans
    88 study
    89 subvalvular region
    90 system
    91 tomography
    92 tomography image quality
    93 total
    94 tube voltage
    95 types
    96 valve
    97 valve leaflets
    98 valve replacement
    99 valve type
    100 variability
    101 visibility
    102 voltage
    103 schema:name Factors affecting computed tomography image quality for assessment of mechanical aortic valves
    104 schema:pagination 63-71
    105 schema:productId N6e0f4179ec0e4d06ba06955863e01802
    106 N6ef6c38d6fac4052b89c15ece067af87
    107 N81db9df8b7f94498b89044927a1d7433
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008675242
    109 https://doi.org/10.1007/s10554-015-0817-5
    110 schema:sdDatePublished 2022-10-01T06:40
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N9ff0979f7e10404f9097b9fedbfd4770
    113 schema:url https://doi.org/10.1007/s10554-015-0817-5
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N0b80b632127a47feaea2294ea2780db4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Heart Rate
    119 rdf:type schema:DefinedTerm
    120 N0eb173adb9824088b570657eac0cf1a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Reproducibility of Results
    122 rdf:type schema:DefinedTerm
    123 N2421d831811549cfbcabe65a5a9b1270 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Retrospective Studies
    125 rdf:type schema:DefinedTerm
    126 N2d91d1c46c8a44f3affd48ff5b55c80a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Heart Valve Prosthesis Implantation
    128 rdf:type schema:DefinedTerm
    129 N3bf27a215ecd481c9137b31d74432126 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Humans
    131 rdf:type schema:DefinedTerm
    132 N3cf5e1bcb2b4458ea4e39e8c8f4949e6 rdf:first sg:person.01143557676.31
    133 rdf:rest N5fa239345aa34096a12b63f6ac4d9512
    134 N42080a56eef24511ae39d1877120b968 schema:issueNumber Suppl 1
    135 rdf:type schema:PublicationIssue
    136 N4c0971fb36d44b5a95e1b2c7cc6f2ef3 rdf:first sg:person.01146225770.38
    137 rdf:rest Nff8e7569327d47679f2991defc6abd15
    138 N547312e81e254c059f622de76fca02f3 rdf:first sg:person.015766550713.45
    139 rdf:rest N3cf5e1bcb2b4458ea4e39e8c8f4949e6
    140 N5ee06c6aa5444588973d832c68877491 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Tomography, X-Ray Computed
    142 rdf:type schema:DefinedTerm
    143 N5ee24fcd0ee442c08add534f55fc0856 rdf:first sg:person.01101305576.04
    144 rdf:rest rdf:nil
    145 N5fa239345aa34096a12b63f6ac4d9512 rdf:first sg:person.01014245442.81
    146 rdf:rest N939076f900184f4e8cf0d4b411cbf09b
    147 N60032f9fc22a479c9969a4347781c5b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Male
    149 rdf:type schema:DefinedTerm
    150 N661b9daea55048bd85514035795116ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Artifacts
    152 rdf:type schema:DefinedTerm
    153 N6e0f4179ec0e4d06ba06955863e01802 schema:name dimensions_id
    154 schema:value pub.1008675242
    155 rdf:type schema:PropertyValue
    156 N6ef6c38d6fac4052b89c15ece067af87 schema:name doi
    157 schema:value 10.1007/s10554-015-0817-5
    158 rdf:type schema:PropertyValue
    159 N749d614ea8864f9fa8d38474808ae9a2 schema:volumeNumber 32
    160 rdf:type schema:PublicationVolume
    161 N74e8efa96aa7439fa9cc71ef6e2efd91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Predictive Value of Tests
    163 rdf:type schema:DefinedTerm
    164 N81db9df8b7f94498b89044927a1d7433 schema:name pubmed_id
    165 schema:value 26626457
    166 rdf:type schema:PropertyValue
    167 N8ba2c5906f0c4c63878cce39c3225c1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Cardiac-Gated Imaging Techniques
    169 rdf:type schema:DefinedTerm
    170 N92f16eda864142d4861d11c9a6ad4d5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Heart Valve Prosthesis
    172 rdf:type schema:DefinedTerm
    173 N939076f900184f4e8cf0d4b411cbf09b rdf:first sg:person.01160231265.97
    174 rdf:rest Nbbafb033a3da47fd84a3dd53c1c24deb
    175 N99b95d9f3b8e47f680c4196d674e220d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Republic of Korea
    177 rdf:type schema:DefinedTerm
    178 N9efa4b0658a143e9bd82793378611e91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Treatment Outcome
    180 rdf:type schema:DefinedTerm
    181 N9ff0979f7e10404f9097b9fedbfd4770 schema:name Springer Nature - SN SciGraph project
    182 rdf:type schema:Organization
    183 Na4edcc07624a49aaa2a128f7893835ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Female
    185 rdf:type schema:DefinedTerm
    186 Nae877e9a1e0a42069ad058d2a67b3a9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Middle Aged
    188 rdf:type schema:DefinedTerm
    189 Naf0f2b4dcc1042af88b3934ec6d428dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Aortic Valve
    191 rdf:type schema:DefinedTerm
    192 Nb08eff8d07d7425c9238cb8bd551c2ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Contrast Media
    194 rdf:type schema:DefinedTerm
    195 Nbbafb033a3da47fd84a3dd53c1c24deb rdf:first sg:person.0631275763.56
    196 rdf:rest N4c0971fb36d44b5a95e1b2c7cc6f2ef3
    197 Nccc9bddca9854e8986372c8e4e900684 rdf:first sg:person.01130371063.10
    198 rdf:rest N5ee24fcd0ee442c08add534f55fc0856
    199 Ndf90f4bb5be24570b9f9e932d3f04382 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Aged
    201 rdf:type schema:DefinedTerm
    202 Ne10fa5eed1a14423a235988628aa74f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Iopamidol
    204 rdf:type schema:DefinedTerm
    205 Ne2ccaae4fb184e6982f28ebf45c18ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Prosthesis Design
    207 rdf:type schema:DefinedTerm
    208 Nec7c408c320740f39623c5ea3565c905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Databases, Factual
    210 rdf:type schema:DefinedTerm
    211 Nf7e1bda5aed54335b73d645affd36714 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Electrocardiography
    213 rdf:type schema:DefinedTerm
    214 Nff8e7569327d47679f2991defc6abd15 rdf:first sg:person.0724201617.22
    215 rdf:rest Nccc9bddca9854e8986372c8e4e900684
    216 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Medical and Health Sciences
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Cardiorespiratory Medicine and Haematology
    221 rdf:type schema:DefinedTerm
    222 sg:journal.1025429 schema:issn 1569-5794
    223 1573-0743
    224 schema:name The International Journal of Cardiovascular Imaging
    225 schema:publisher Springer Nature
    226 rdf:type schema:Periodical
    227 sg:person.01014245442.81 schema:affiliation grid-institutes:grid.415562.1
    228 schema:familyName Hong
    229 schema:givenName Yoo Jin
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81
    231 rdf:type schema:Person
    232 sg:person.01101305576.04 schema:affiliation grid-institutes:grid.415562.1
    233 schema:familyName Choi
    234 schema:givenName Byoung Wook
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04
    236 rdf:type schema:Person
    237 sg:person.01130371063.10 schema:affiliation grid-institutes:grid.415562.1
    238 schema:familyName Kim
    239 schema:givenName Yun Jung
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130371063.10
    241 rdf:type schema:Person
    242 sg:person.01143557676.31 schema:affiliation grid-institutes:grid.415562.1
    243 schema:familyName Kim
    244 schema:givenName Young Jin
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31
    246 rdf:type schema:Person
    247 sg:person.01146225770.38 schema:affiliation grid-institutes:grid.415562.1
    248 schema:familyName Hong
    249 schema:givenName Sae Rom
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146225770.38
    251 rdf:type schema:Person
    252 sg:person.01160231265.97 schema:affiliation grid-institutes:grid.415562.1
    253 schema:familyName Lee
    254 schema:givenName Hye-Jeong
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97
    256 rdf:type schema:Person
    257 sg:person.015766550713.45 schema:affiliation grid-institutes:grid.415562.1
    258 schema:familyName Suh
    259 schema:givenName Young Joo
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766550713.45
    261 rdf:type schema:Person
    262 sg:person.0631275763.56 schema:affiliation grid-institutes:grid.415562.1
    263 schema:familyName Hur
    264 schema:givenName Jin
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56
    266 rdf:type schema:Person
    267 sg:person.0724201617.22 schema:affiliation grid-institutes:grid.415562.1
    268 schema:familyName Im
    269 schema:givenName Dong Jin
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22
    271 rdf:type schema:Person
    272 sg:pub.10.1007/s00330-008-1232-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028204967
    273 https://doi.org/10.1007/s00330-008-1232-2
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00330-009-1419-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047804156
    276 https://doi.org/10.1007/s00330-009-1419-1
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s00330-011-2068-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050838663
    279 https://doi.org/10.1007/s00330-011-2068-8
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s00330-011-2146-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000693840
    282 https://doi.org/10.1007/s00330-011-2146-y
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s00330-011-2358-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007818475
    285 https://doi.org/10.1007/s00330-011-2358-1
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s003300050673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012880990
    288 https://doi.org/10.1007/s003300050673
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s10554-012-0041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026490518
    291 https://doi.org/10.1007/s10554-012-0041-5
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s10554-012-0142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008957209
    294 https://doi.org/10.1007/s10554-012-0142-1
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s10554-014-0379-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014728933
    297 https://doi.org/10.1007/s10554-014-0379-y
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s11547-010-0599-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002855478
    300 https://doi.org/10.1007/s11547-010-0599-8
    301 rdf:type schema:CreativeWork
    302 grid-institutes:grid.415562.1 schema:alternateName Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea
    303 schema:name Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea
    304 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...