Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

Hyun Woo Goo, Sang-Hyub Park

ABSTRACT

To assess agreement between two semi-automatic, three-dimensional (3D) computed tomography (CT) ventricular volumetry methods with different user interactions in patients with congenital heart disease. In 30 patients with congenital heart disease (median age 8 years, range 5 days-33 years; 20 men), dual-source, multi-section, electrocardiography-synchronized cardiac CT was obtained at the end-systolic (n = 22) and/or end-diastolic (n = 28) phase. Nineteen left ventricle end-systolic (LV ESV), 28 left ventricle end-diastolic (LV EDV), 22 right ventricle end-systolic (RV ESV), and 28 right ventricle end-diastolic volumes (RV EDV) were successfully calculated using two semi-automatic, 3D segmentation methods with different user interactions (high in method 1, low in method 2). The calculated ventricular volumes of the two methods were compared and correlated. A P value <0.05 was considered statistically significant. LV ESV (35.95 ± 23.49 ml), LV EDV (88.76 ± 61.83 ml), and RV ESV (46.87 ± 47.39 ml) measured by method 2 were slightly but significantly smaller than those measured by method 1 (41.25 ± 26.94 ml, 92.20 ± 62.69 ml, 53.61 ± 50.08 ml for LV ESV, LV EDV, and RV ESV, respectively; P ≤ 0.02). In contrast, no statistically significant difference in RV EDV (122.57 ± 88.57 ml in method 1, 123.83 ± 89.89 ml in method 2; P = 0.36) was found between the two methods. All ventricular volumes showed very high correlation (R = 0.978, 0.993, 0.985, 0.997 for LV ESV, LV EDV, RV ESV, and RV EDV, respectively; P < 0.001) between the two methods. In patients with congenital heart disease, 3D CT ventricular volumetry shows good agreement and high correlation between the two methods, but method 2 tends to slightly underestimate LV ESV, LV EDV, and RV ESV. More... »

PAGES

223-232

References to SciGraph publications

  • 2013-03. Impact of right ventricular endocardial trabeculae on volumes and function assessed by CMR in patients with tetralogy of Fallot in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2011-08. Repeatability of cardiac-MRI-measured right ventricular size and function in congenital heart disease in PEDIATRIC RADIOLOGY
  • 2009-03. Comparison of MRI, 64-slice MDCT and DSCT in assessing functional cardiac parameters of a moving heart phantom in EUROPEAN RADIOLOGY
  • 2007-02. Left ventricular noncompaction in an infant: use of non-ECG-gated cardiac CT in PEDIATRIC RADIOLOGY
  • 2009-08. Coronary CT angiography: automatic cardiac-phase selection for image reconstruction in EUROPEAN RADIOLOGY
  • 2011-07. Comparison of (semi-)automatic and manually adjusted measurements of left ventricular function in dual source computed tomography using three different software tools in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2010-09. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results in PEDIATRIC RADIOLOGY
  • 2005-02. Assessment of right ventricular function by 16-detector-row CT: comparison with magnetic resonance imaging in EUROPEAN RADIOLOGY
  • 2013-02. Left ventricle volume measured by cardiac CT in an infant with a small left ventricle: a new and accurate method in determining uni- or biventricular repair in PEDIATRIC RADIOLOGY
  • 2011-07. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation in PEDIATRIC RADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10554-015-0751-6

    DOI

    http://dx.doi.org/10.1007/s10554-015-0751-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026919869

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26319216


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Automation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child, Preschool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Defects, Congenital", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Ventricles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant, Newborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multidetector Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Observer Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiographic Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stroke Volume", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Function, Left", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Function, Right", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Asan Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.413967.e", 
              "name": [
                "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goo", 
            "givenName": "Hyun Woo", 
            "id": "sg:person.0734225244.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734225244.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Asan Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.413967.e", 
              "name": [
                "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Sang-Hyub", 
            "id": "sg:person.01204034564.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204034564.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3348/kjr.2010.11.1.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001431065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3348/kjr.2010.11.1.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001431065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2482072016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003466455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-010-1645-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003715685", 
              "https://doi.org/10.1007/s00247-010-1645-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-010-1645-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003715685", 
              "https://doi.org/10.1007/s00247-010-1645-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-012-2464-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003807984", 
              "https://doi.org/10.1007/s00247-012-2464-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-004-2543-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005236595", 
              "https://doi.org/10.1007/s00330-004-2543-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-008-1197-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010982241", 
              "https://doi.org/10.1007/s00330-008-1197-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcmg.2012.05.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011406901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-011-2121-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011624580", 
              "https://doi.org/10.1007/s00247-011-2121-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-010-9727-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011659348", 
              "https://doi.org/10.1007/s10554-010-9727-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0b013e3181a9aaaf", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011761880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0b013e3181a9aaaf", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011761880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0b013e3181a9aaaf", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011761880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2010.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012332949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-006-0360-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016861608", 
              "https://doi.org/10.1007/s00247-006-0360-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-006-0360-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016861608", 
              "https://doi.org/10.1007/s00247-006-0360-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.111.966754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025073180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.111.966754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025073180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-011-2033-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026955552", 
              "https://doi.org/10.1007/s00247-011-2033-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/rg.322115058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029632314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3348/kjr.2012.13.1.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034698770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0b013e3180336ca1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035541321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0b013e3180336ca1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035541321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1258/ar.2012.120452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037480467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1258/ar.2012.120452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037480467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-012-0112-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041358667", 
              "https://doi.org/10.1007/s10554-012-0112-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rcl.2011.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041785582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2010.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043440299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcmg.2009.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043807828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.23892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048044994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3348/kjr.2015.16.1.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049868077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-009-1368-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050971269", 
              "https://doi.org/10.1007/s00330-009-1368-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-009-1368-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050971269", 
              "https://doi.org/10.1007/s00330-009-1368-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-009-1368-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050971269", 
              "https://doi.org/10.1007/s00330-009-1368-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.21948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053210920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.21948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053210920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.07.2283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069298605"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "To assess agreement between two semi-automatic, three-dimensional (3D) computed tomography (CT) ventricular volumetry methods with different user interactions in patients with congenital heart disease. In 30 patients with congenital heart disease (median age 8\u00a0years, range 5\u00a0days-33\u00a0years; 20 men), dual-source, multi-section, electrocardiography-synchronized cardiac CT was obtained at the end-systolic (n\u00a0=\u00a022) and/or end-diastolic (n\u00a0=\u00a028) phase. Nineteen left ventricle end-systolic (LV ESV), 28 left ventricle end-diastolic (LV EDV), 22 right ventricle end-systolic (RV ESV), and 28 right ventricle end-diastolic volumes (RV EDV) were successfully calculated using two semi-automatic, 3D segmentation methods with different user interactions (high in method 1, low in method 2). The calculated ventricular volumes of the two methods were compared and correlated. A P value <0.05 was considered statistically significant. LV ESV (35.95\u00a0\u00b1\u00a023.49\u00a0ml), LV EDV (88.76\u00a0\u00b1\u00a061.83\u00a0ml), and RV ESV (46.87\u00a0\u00b1\u00a047.39\u00a0ml) measured by method 2 were slightly but significantly smaller than those measured by method 1 (41.25\u00a0\u00b1\u00a026.94\u00a0ml, 92.20\u00a0\u00b1\u00a062.69\u00a0ml, 53.61\u00a0\u00b1\u00a050.08\u00a0ml for LV ESV, LV EDV, and RV ESV, respectively; P\u00a0\u2264\u00a00.02). In contrast, no statistically significant difference in RV EDV (122.57\u00a0\u00b1\u00a088.57\u00a0ml in method 1, 123.83\u00a0\u00b1\u00a089.89\u00a0ml in method 2; P\u00a0=\u00a00.36) was found between the two methods. All ventricular volumes showed very high correlation (R\u00a0=\u00a00.978, 0.993, 0.985, 0.997 for LV ESV, LV EDV, RV ESV, and RV EDV, respectively; P\u00a0<\u00a00.001) between the two methods. In patients with congenital heart disease, 3D CT ventricular volumetry shows good agreement and high correlation between the two methods, but method 2 tends to slightly underestimate LV ESV, LV EDV, and RV ESV. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10554-015-0751-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1025429", 
            "issn": [
              "1569-5794", 
              "1573-0743"
            ], 
            "name": "The International Journal of Cardiovascular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction", 
        "pagination": "223-232", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "803db028e9e0bfbffbcb3a33b909284520eb5165a5021723e77ff444d93867d3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26319216"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100969716"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10554-015-0751-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026919869"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10554-015-0751-6", 
          "https://app.dimensions.ai/details/publication/pub.1026919869"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10554-015-0751-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0751-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0751-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0751-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0751-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      21 PREDICATES      79 URIs      44 LITERALS      32 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10554-015-0751-6 schema:about N09660da015fb4f5fa1d58ed3c16d9798
    2 N0d0646d4b4384a668163c2391710b124
    3 N2622ab4b5f614821aafb3f19d55b9b16
    4 N315436bee64a406f9c3d93cd173204e4
    5 N3324f6c8677f40209638ef9a1b4ac89b
    6 N33a17a8c0d534f1d8b244d4d69d11f2f
    7 N34d9423f603948aca0f454c776df9b82
    8 N370d4bf41c62416286a929829a82823f
    9 N51c0f3b1ed2841e7a177b0c2b7cea5c1
    10 N60d12785513c4e3db53ed846e7d622e7
    11 N64833cab740d4333ae836b8fe2d5c55e
    12 N6cf6dfd47d4f4e1da6533fca5281dc1d
    13 N71a971fbce4140c987e3b5110db0db8a
    14 N7c833272c7f34749b8688a6a6382fc4a
    15 N81b2f2d570f648538c0acdf69ee186a6
    16 N88e14eebf4fc4534879102a109d8e517
    17 Nac4aae9875f14478abe3347ada849b7e
    18 Nb70575d38e884849be7c734c50bb8e8b
    19 Nca89512ea8f74c559460800927b79b66
    20 Ncedea148a21148afb8fa8e987fb80532
    21 Ndf806713a0264d2ab11fd2de9d3754cc
    22 Ne199ee84d19d4e99ba9c2aff718728f1
    23 Ne5a6bff5ccc24991be49e0452d497f7f
    24 anzsrc-for:11
    25 anzsrc-for:1102
    26 schema:author Nac19deceb01f432ba7898474ba04012b
    27 schema:citation sg:pub.10.1007/s00247-006-0360-6
    28 sg:pub.10.1007/s00247-010-1645-3
    29 sg:pub.10.1007/s00247-011-2033-3
    30 sg:pub.10.1007/s00247-011-2121-4
    31 sg:pub.10.1007/s00247-012-2464-5
    32 sg:pub.10.1007/s00330-004-2543-6
    33 sg:pub.10.1007/s00330-008-1197-1
    34 sg:pub.10.1007/s00330-009-1368-8
    35 sg:pub.10.1007/s10554-010-9727-8
    36 sg:pub.10.1007/s10554-012-0112-7
    37 https://doi.org/10.1002/jmri.21948
    38 https://doi.org/10.1002/jmri.23892
    39 https://doi.org/10.1016/j.ejrad.2010.10.002
    40 https://doi.org/10.1016/j.jcmg.2009.09.017
    41 https://doi.org/10.1016/j.jcmg.2012.05.015
    42 https://doi.org/10.1016/j.media.2010.12.004
    43 https://doi.org/10.1016/j.rcl.2011.06.001
    44 https://doi.org/10.1097/rli.0b013e3180336ca1
    45 https://doi.org/10.1097/rli.0b013e3181a9aaaf
    46 https://doi.org/10.1148/radiol.2482072016
    47 https://doi.org/10.1148/rg.322115058
    48 https://doi.org/10.1161/circimaging.111.966754
    49 https://doi.org/10.1258/ar.2012.120452
    50 https://doi.org/10.2214/ajr.07.2283
    51 https://doi.org/10.3348/kjr.2010.11.1.4
    52 https://doi.org/10.3348/kjr.2012.13.1.1
    53 https://doi.org/10.3348/kjr.2015.16.1.4
    54 schema:datePublished 2015-12
    55 schema:datePublishedReg 2015-12-01
    56 schema:description To assess agreement between two semi-automatic, three-dimensional (3D) computed tomography (CT) ventricular volumetry methods with different user interactions in patients with congenital heart disease. In 30 patients with congenital heart disease (median age 8 years, range 5 days-33 years; 20 men), dual-source, multi-section, electrocardiography-synchronized cardiac CT was obtained at the end-systolic (n = 22) and/or end-diastolic (n = 28) phase. Nineteen left ventricle end-systolic (LV ESV), 28 left ventricle end-diastolic (LV EDV), 22 right ventricle end-systolic (RV ESV), and 28 right ventricle end-diastolic volumes (RV EDV) were successfully calculated using two semi-automatic, 3D segmentation methods with different user interactions (high in method 1, low in method 2). The calculated ventricular volumes of the two methods were compared and correlated. A P value <0.05 was considered statistically significant. LV ESV (35.95 ± 23.49 ml), LV EDV (88.76 ± 61.83 ml), and RV ESV (46.87 ± 47.39 ml) measured by method 2 were slightly but significantly smaller than those measured by method 1 (41.25 ± 26.94 ml, 92.20 ± 62.69 ml, 53.61 ± 50.08 ml for LV ESV, LV EDV, and RV ESV, respectively; P ≤ 0.02). In contrast, no statistically significant difference in RV EDV (122.57 ± 88.57 ml in method 1, 123.83 ± 89.89 ml in method 2; P = 0.36) was found between the two methods. All ventricular volumes showed very high correlation (R = 0.978, 0.993, 0.985, 0.997 for LV ESV, LV EDV, RV ESV, and RV EDV, respectively; P < 0.001) between the two methods. In patients with congenital heart disease, 3D CT ventricular volumetry shows good agreement and high correlation between the two methods, but method 2 tends to slightly underestimate LV ESV, LV EDV, and RV ESV.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf Ncf1eba629de4453a9ca29333d8d91540
    61 Nd42eff0bc2fa40a792657323efbab645
    62 sg:journal.1025429
    63 schema:name Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction
    64 schema:pagination 223-232
    65 schema:productId N0c20d0924cca44178eb02205c49de5e9
    66 N297a553516ff4263aee921c19ce5174a
    67 N8c110f24c50040eebf9ab44b4934bb7d
    68 N977814003fca47c5b9a75506781f87f6
    69 Nfcfd392b96d64ed6b7ff38624519932b
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026919869
    71 https://doi.org/10.1007/s10554-015-0751-6
    72 schema:sdDatePublished 2019-04-10T15:01
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N6727e906fe9e4e2db99f7f93364df930
    75 schema:url http://link.springer.com/10.1007%2Fs10554-015-0751-6
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N09660da015fb4f5fa1d58ed3c16d9798 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Ventricular Function, Left
    81 rdf:type schema:DefinedTerm
    82 N0c20d0924cca44178eb02205c49de5e9 schema:name readcube_id
    83 schema:value 803db028e9e0bfbffbcb3a33b909284520eb5165a5021723e77ff444d93867d3
    84 rdf:type schema:PropertyValue
    85 N0d0646d4b4384a668163c2391710b124 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Stroke Volume
    87 rdf:type schema:DefinedTerm
    88 N2622ab4b5f614821aafb3f19d55b9b16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Predictive Value of Tests
    90 rdf:type schema:DefinedTerm
    91 N297a553516ff4263aee921c19ce5174a schema:name dimensions_id
    92 schema:value pub.1026919869
    93 rdf:type schema:PropertyValue
    94 N315436bee64a406f9c3d93cd173204e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Humans
    96 rdf:type schema:DefinedTerm
    97 N3324f6c8677f40209638ef9a1b4ac89b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Reproducibility of Results
    99 rdf:type schema:DefinedTerm
    100 N33a17a8c0d534f1d8b244d4d69d11f2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Child, Preschool
    102 rdf:type schema:DefinedTerm
    103 N34d9423f603948aca0f454c776df9b82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Adolescent
    105 rdf:type schema:DefinedTerm
    106 N370d4bf41c62416286a929829a82823f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Female
    108 rdf:type schema:DefinedTerm
    109 N3ac8bc50b2714efe931d0517a20ffb0e rdf:first sg:person.01204034564.52
    110 rdf:rest rdf:nil
    111 N51c0f3b1ed2841e7a177b0c2b7cea5c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Young Adult
    113 rdf:type schema:DefinedTerm
    114 N60d12785513c4e3db53ed846e7d622e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Radiographic Image Interpretation, Computer-Assisted
    116 rdf:type schema:DefinedTerm
    117 N64833cab740d4333ae836b8fe2d5c55e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Retrospective Studies
    119 rdf:type schema:DefinedTerm
    120 N6727e906fe9e4e2db99f7f93364df930 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N6cf6dfd47d4f4e1da6533fca5281dc1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Infant
    124 rdf:type schema:DefinedTerm
    125 N71a971fbce4140c987e3b5110db0db8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Heart Defects, Congenital
    127 rdf:type schema:DefinedTerm
    128 N7c833272c7f34749b8688a6a6382fc4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Observer Variation
    130 rdf:type schema:DefinedTerm
    131 N81b2f2d570f648538c0acdf69ee186a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Infant, Newborn
    133 rdf:type schema:DefinedTerm
    134 N88e14eebf4fc4534879102a109d8e517 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Ventricular Function, Right
    136 rdf:type schema:DefinedTerm
    137 N8c110f24c50040eebf9ab44b4934bb7d schema:name pubmed_id
    138 schema:value 26319216
    139 rdf:type schema:PropertyValue
    140 N977814003fca47c5b9a75506781f87f6 schema:name doi
    141 schema:value 10.1007/s10554-015-0751-6
    142 rdf:type schema:PropertyValue
    143 Nac19deceb01f432ba7898474ba04012b rdf:first sg:person.0734225244.44
    144 rdf:rest N3ac8bc50b2714efe931d0517a20ffb0e
    145 Nac4aae9875f14478abe3347ada849b7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Child
    147 rdf:type schema:DefinedTerm
    148 Nb70575d38e884849be7c734c50bb8e8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Automation
    150 rdf:type schema:DefinedTerm
    151 Nca89512ea8f74c559460800927b79b66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Heart Ventricles
    153 rdf:type schema:DefinedTerm
    154 Ncedea148a21148afb8fa8e987fb80532 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Multidetector Computed Tomography
    156 rdf:type schema:DefinedTerm
    157 Ncf1eba629de4453a9ca29333d8d91540 schema:issueNumber Suppl 2
    158 rdf:type schema:PublicationIssue
    159 Nd42eff0bc2fa40a792657323efbab645 schema:volumeNumber 31
    160 rdf:type schema:PublicationVolume
    161 Ndf806713a0264d2ab11fd2de9d3754cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Male
    163 rdf:type schema:DefinedTerm
    164 Ne199ee84d19d4e99ba9c2aff718728f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Imaging, Three-Dimensional
    166 rdf:type schema:DefinedTerm
    167 Ne5a6bff5ccc24991be49e0452d497f7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Adult
    169 rdf:type schema:DefinedTerm
    170 Nfcfd392b96d64ed6b7ff38624519932b schema:name nlm_unique_id
    171 schema:value 100969716
    172 rdf:type schema:PropertyValue
    173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Medical and Health Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Cardiorespiratory Medicine and Haematology
    178 rdf:type schema:DefinedTerm
    179 sg:journal.1025429 schema:issn 1569-5794
    180 1573-0743
    181 schema:name The International Journal of Cardiovascular Imaging
    182 rdf:type schema:Periodical
    183 sg:person.01204034564.52 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
    184 schema:familyName Park
    185 schema:givenName Sang-Hyub
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204034564.52
    187 rdf:type schema:Person
    188 sg:person.0734225244.44 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
    189 schema:familyName Goo
    190 schema:givenName Hyun Woo
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734225244.44
    192 rdf:type schema:Person
    193 sg:pub.10.1007/s00247-006-0360-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016861608
    194 https://doi.org/10.1007/s00247-006-0360-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00247-010-1645-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003715685
    197 https://doi.org/10.1007/s00247-010-1645-3
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00247-011-2033-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026955552
    200 https://doi.org/10.1007/s00247-011-2033-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00247-011-2121-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011624580
    203 https://doi.org/10.1007/s00247-011-2121-4
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00247-012-2464-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003807984
    206 https://doi.org/10.1007/s00247-012-2464-5
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00330-004-2543-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005236595
    209 https://doi.org/10.1007/s00330-004-2543-6
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00330-008-1197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010982241
    212 https://doi.org/10.1007/s00330-008-1197-1
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00330-009-1368-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050971269
    215 https://doi.org/10.1007/s00330-009-1368-8
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s10554-010-9727-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011659348
    218 https://doi.org/10.1007/s10554-010-9727-8
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s10554-012-0112-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041358667
    221 https://doi.org/10.1007/s10554-012-0112-7
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1002/jmri.21948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053210920
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1002/jmri.23892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048044994
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.ejrad.2010.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012332949
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.jcmg.2009.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043807828
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.jcmg.2012.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011406901
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.media.2010.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043440299
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.rcl.2011.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041785582
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1097/rli.0b013e3180336ca1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035541321
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1097/rli.0b013e3181a9aaaf schema:sameAs https://app.dimensions.ai/details/publication/pub.1011761880
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1148/radiol.2482072016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003466455
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1148/rg.322115058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029632314
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1161/circimaging.111.966754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025073180
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1258/ar.2012.120452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037480467
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.2214/ajr.07.2283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298605
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.3348/kjr.2010.11.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001431065
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.3348/kjr.2012.13.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034698770
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.3348/kjr.2015.16.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049868077
    256 rdf:type schema:CreativeWork
    257 https://www.grid.ac/institutes/grid.413967.e schema:alternateName Asan Medical Center
    258 schema:name Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...