High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

Jin Liu, William S. Kerwin, James H. Caldwell, Marina S. Ferguson, Daniel S. Hippe, Adam M. Alessio, Vanesa Martinez-Malo, Kristi Pimentel, Robert S. Miyaoka, Ted R. Kohler, Thomas S. Hatsukami, Chun Yuan

ABSTRACT

This study sought to discover which atherosclerotic plaque components co-localize with enhanced [(18)F]-fluorodeoxyglucose (FDG) uptake in carotid positron emission tomography (PET) images. Although in vivo PET currently lacks the resolution, high-resolution ex vivo FDG-microPET with histology validation of excised carotid plaque might accomplish this goal. Thirteen patients were injected with FDG before carotid endarterectomy. After excision, the plaque specimens were scanned by microPET and magnetic resonance imaging, and then serially sectioned for histological analysis. Two analyses were performed using generalized linear mixed models: (1) a PET-driven analysis which sampled high and low FDG uptake areas from PET images to identify their components in matched histology specimens; and (2) a histology-driven analysis where specific plaque components were selected and matched to corresponding PET images. In the PET-driven analysis, regions of high FDG uptake were more likely to contain inflammatory cells (p < 0.001) and neovasculature (p = 0.008) than regions of low FDG uptake. In the histology-driven analysis, regions with inflammatory cells (p = 0.001) and regions with loose extracellular matrix (p = 0.001) were associated with enhanced FDG uptake. Furthermore, areas of complex inflammatory cell infiltrate (co-localized macrophages, lymphocytes and foam cells) had the highest FDG uptake among inflammatory subgroups (p < 0.001). In conclusion, in carotid plaque, regions of inflammatory cell infiltrate, particularly complex one, co-localized with enhanced FDG uptake in high-resolution FDG-microPET images. Loose extracellular matrix and areas containing neovasculature also produced FDG signal. This study points to the potential ability of FDG-PET to detect the cellular components of the vulnerable plaque. More... »

PAGES

145-152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-015-0739-2

DOI

http://dx.doi.org/10.1007/s10554-015-0739-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040490379

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26280889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endarterectomy, Carotid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neovascularization, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Calcification", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Bioengineering, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jin", 
        "id": "sg:person.01055522151.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055522151.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kerwin", 
        "givenName": "William S.", 
        "id": "sg:person.0640513500.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldwell", 
        "givenName": "James H.", 
        "id": "sg:person.01172021053.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172021053.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferguson", 
        "givenName": "Marina S.", 
        "id": "sg:person.01064030670.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064030670.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S.", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alessio", 
        "givenName": "Adam M.", 
        "id": "sg:person.0673624601.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673624601.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinez-Malo", 
        "givenName": "Vanesa", 
        "id": "sg:person.0630706251.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630706251.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pimentel", 
        "givenName": "Kristi", 
        "id": "sg:person.0677021451.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677021451.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyaoka", 
        "givenName": "Robert S.", 
        "id": "sg:person.0630341646.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630341646.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Surgery, Seattle VA Puget Sound Health Care System, Seattle, WA, USA", 
            "Department of Surgery, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohler", 
        "givenName": "Ted R.", 
        "id": "sg:person.0773565631.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773565631.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Surgery, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatsukami", 
        "givenName": "Thomas S.", 
        "id": "sg:person.013351427457.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Bioengineering, University of Washington, Seattle, WA, USA", 
            "Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2010.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001965791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199901143400207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003372113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2293021168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007747507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.959478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010566343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.959478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010566343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.959478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010566343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2005.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012668032", 
          "https://doi.org/10.1016/j.nuclcard.2005.03.002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-015-0069-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013035992", 
          "https://doi.org/10.1007/s12350-015-0069-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-011-9460-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015317188", 
          "https://doi.org/10.1007/s12350-011-9460-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.092866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016620523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000020548.60110.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020598728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0159-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022162075", 
          "https://doi.org/10.1007/s00259-006-0159-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0159-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022162075", 
          "https://doi.org/10.1007/s00259-006-0159-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.093724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022440257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2011.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023793834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0046-8177(95)90148-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025505237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0741-5214(99)70136-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025641205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000087480.94275.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030857438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.05.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032429626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2014.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032952210", 
          "https://doi.org/10.1038/nrcardio.2014.80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.01.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035102530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2005.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036790779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-1018-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039260132", 
          "https://doi.org/10.1007/s00259-002-1018-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000441139.02102.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040460683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000441139.02102.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040460683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.179705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043208862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.179705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043208862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.975144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045730986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.975144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045730986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077094732", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "This study sought to discover which atherosclerotic plaque components co-localize with enhanced [(18)F]-fluorodeoxyglucose (FDG) uptake in carotid positron emission tomography (PET) images. Although in vivo PET currently lacks the resolution, high-resolution ex vivo FDG-microPET with histology validation of excised carotid plaque might accomplish this goal. Thirteen patients were injected with FDG before carotid endarterectomy. After excision, the plaque specimens were scanned by microPET and magnetic resonance imaging, and then serially sectioned for histological analysis. Two analyses were performed using generalized linear mixed models: (1) a PET-driven analysis which sampled high and low FDG uptake areas from PET images to identify their components in matched histology specimens; and (2) a histology-driven analysis where specific plaque components were selected and matched to corresponding PET images. In the PET-driven analysis, regions of high FDG uptake were more likely to contain inflammatory cells (p < 0.001) and neovasculature (p = 0.008) than regions of low FDG uptake. In the histology-driven analysis, regions with inflammatory cells (p = 0.001) and regions with loose extracellular matrix (p = 0.001) were associated with enhanced FDG uptake. Furthermore, areas of complex inflammatory cell infiltrate (co-localized macrophages, lymphocytes and foam cells) had the highest FDG uptake among inflammatory subgroups (p < 0.001). In conclusion, in carotid plaque, regions of inflammatory cell infiltrate, particularly complex one, co-localized with enhanced FDG uptake in high-resolution FDG-microPET images. Loose extracellular matrix and areas containing neovasculature also produced FDG signal. This study points to the potential ability of FDG-PET to detect the cellular components of the vulnerable plaque.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-015-0739-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2614340", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake", 
    "pagination": "145-152", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c0e14c92ff1caca4ecf9fc533630fb2bdffec4da469f775e119b82699613361a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26280889"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-015-0739-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040490379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-015-0739-2", 
      "https://app.dimensions.ai/details/publication/pub.1040490379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10554-015-0739-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0739-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0739-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0739-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0739-2'


 

This table displays all metadata directly associated to this object as RDF triples.

324 TRIPLES      21 PREDICATES      73 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-015-0739-2 schema:about N0c7c7455ff7546b69434ee78f9b29f3a
2 N2587fdcf7b6e4cdf9c32f9280b018b77
3 N2e4284625eeb44e2a3f3078e7161a27a
4 N599da22b0e7a48b7ba78beee26e7a7a9
5 N62e15bdf14394ddf8214725901ea510a
6 N7c2ae6f523594b80b3af1b9e0258f43b
7 N87d95200b3bf469c81c5b41000336c9c
8 N96e0a53281b4475b948a8471f835e0f6
9 Na32ec4d297d24a7a8dd3d5dc5d082e78
10 Nb372fbe81ff34366befc01bcad5e25b8
11 Nb475631504c9446183bc22b766b2aea4
12 Nb488e8212f014a078f2f7585da36245f
13 Nbe22bc94158e4461965d27884aff5467
14 Nbfc0f5faa67d45f3983c83fc997fa540
15 Ncf0f7a687efc405d82059bbae294fc76
16 Nd0bbd39dfd3240f8b95e46261873a36f
17 Ndb888ee5d86940c19fd718791ecafc94
18 Neab58d2a68e246f09484c48e3228ccd3
19 Neb7b56fb07a740928077994b124b7d12
20 Nff34a5b706f742d296b0d3595f4b1a6e
21 anzsrc-for:06
22 anzsrc-for:0601
23 schema:author Nee1640e77acb4ae49f3b13da317d3d72
24 schema:citation sg:pub.10.1007/s00259-002-1018-8
25 sg:pub.10.1007/s00259-006-0159-6
26 sg:pub.10.1007/s12350-011-9460-2
27 sg:pub.10.1007/s12350-015-0069-8
28 sg:pub.10.1016/j.nuclcard.2005.03.002
29 sg:pub.10.1038/nrcardio.2014.80
30 https://app.dimensions.ai/details/publication/pub.1077094732
31 https://doi.org/10.1016/0046-8177(95)90148-5
32 https://doi.org/10.1016/j.atherosclerosis.2005.11.017
33 https://doi.org/10.1016/j.atherosclerosis.2010.01.002
34 https://doi.org/10.1016/j.jacc.2006.05.076
35 https://doi.org/10.1016/j.jacc.2007.01.089
36 https://doi.org/10.1016/j.jacc.2011.03.044
37 https://doi.org/10.1016/s0741-5214(99)70136-9
38 https://doi.org/10.1056/nejm199901143400207
39 https://doi.org/10.1148/radiol.2293021168
40 https://doi.org/10.1161/01.cir.0000020548.60110.76
41 https://doi.org/10.1161/01.cir.0000087480.94275.97
42 https://doi.org/10.1161/01.cir.0000441139.02102.80
43 https://doi.org/10.1161/atvbaha.108.179705
44 https://doi.org/10.1161/circimaging.110.959478
45 https://doi.org/10.1161/circimaging.112.975144
46 https://doi.org/10.2967/jnumed.111.092866
47 https://doi.org/10.2967/jnumed.111.093724
48 schema:datePublished 2016-01
49 schema:datePublishedReg 2016-01-01
50 schema:description This study sought to discover which atherosclerotic plaque components co-localize with enhanced [(18)F]-fluorodeoxyglucose (FDG) uptake in carotid positron emission tomography (PET) images. Although in vivo PET currently lacks the resolution, high-resolution ex vivo FDG-microPET with histology validation of excised carotid plaque might accomplish this goal. Thirteen patients were injected with FDG before carotid endarterectomy. After excision, the plaque specimens were scanned by microPET and magnetic resonance imaging, and then serially sectioned for histological analysis. Two analyses were performed using generalized linear mixed models: (1) a PET-driven analysis which sampled high and low FDG uptake areas from PET images to identify their components in matched histology specimens; and (2) a histology-driven analysis where specific plaque components were selected and matched to corresponding PET images. In the PET-driven analysis, regions of high FDG uptake were more likely to contain inflammatory cells (p < 0.001) and neovasculature (p = 0.008) than regions of low FDG uptake. In the histology-driven analysis, regions with inflammatory cells (p = 0.001) and regions with loose extracellular matrix (p = 0.001) were associated with enhanced FDG uptake. Furthermore, areas of complex inflammatory cell infiltrate (co-localized macrophages, lymphocytes and foam cells) had the highest FDG uptake among inflammatory subgroups (p < 0.001). In conclusion, in carotid plaque, regions of inflammatory cell infiltrate, particularly complex one, co-localized with enhanced FDG uptake in high-resolution FDG-microPET images. Loose extracellular matrix and areas containing neovasculature also produced FDG signal. This study points to the potential ability of FDG-PET to detect the cellular components of the vulnerable plaque.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N317dda877b044bd69b442007f6ae8561
55 Nb9f4e0ef996a403687192739085c555f
56 sg:journal.1025429
57 schema:name High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake
58 schema:pagination 145-152
59 schema:productId N3c80aea1efda49fea9cf5e129564801b
60 N40e8db5caa4f4da88c3b6a39e4aa0ea3
61 N80a6b7d7aaf74362a2912083ddadac62
62 Nb65f942393424b75bd072405f446ce4e
63 Nbfbe254c6eec47d2b99d6003cc338402
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040490379
65 https://doi.org/10.1007/s10554-015-0739-2
66 schema:sdDatePublished 2019-04-10T20:47
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N8c9298de57fb4981a1f98782841df90d
69 schema:url http://link.springer.com/10.1007%2Fs10554-015-0739-2
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0c7c7455ff7546b69434ee78f9b29f3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Male
75 rdf:type schema:DefinedTerm
76 N1c207e32aa93437c8ca019e83a6b8ab3 schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
77 rdf:type schema:Organization
78 N21c94fb6d34c4098912fbe980b167047 rdf:first sg:person.01172021053.68
79 rdf:rest N2b6cbe37371444f1bffcd051062b9cca
80 N2587fdcf7b6e4cdf9c32f9280b018b77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Carotid Arteries
82 rdf:type schema:DefinedTerm
83 N2a660da5b712416392a5b50dd4e91a91 schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
84 rdf:type schema:Organization
85 N2b6cbe37371444f1bffcd051062b9cca rdf:first sg:person.01064030670.72
86 rdf:rest N85fa76951e8d4518be52af64b5b0864f
87 N2e4284625eeb44e2a3f3078e7161a27a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Female
89 rdf:type schema:DefinedTerm
90 N317dda877b044bd69b442007f6ae8561 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 N330153e27dbd421fa9efde2577f7cfc6 schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
93 rdf:type schema:Organization
94 N37025e7fc3a849d794aecd60d0946fa0 rdf:first sg:person.0673624601.02
95 rdf:rest N9f0a116ba6e44e3e879face79de300a9
96 N3c80aea1efda49fea9cf5e129564801b schema:name pubmed_id
97 schema:value 26280889
98 rdf:type schema:PropertyValue
99 N403510863d6c4c9d9762a31398a3a055 schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
100 rdf:type schema:Organization
101 N40e8db5caa4f4da88c3b6a39e4aa0ea3 schema:name readcube_id
102 schema:value c0e14c92ff1caca4ecf9fc533630fb2bdffec4da469f775e119b82699613361a
103 rdf:type schema:PropertyValue
104 N566517655d3240379cdb8ab11998e30a schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
105 rdf:type schema:Organization
106 N568a7942cb044ba18bfc7ef155a6a42e rdf:first sg:person.0640513500.33
107 rdf:rest N21c94fb6d34c4098912fbe980b167047
108 N599da22b0e7a48b7ba78beee26e7a7a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Predictive Value of Tests
110 rdf:type schema:DefinedTerm
111 N62e15bdf14394ddf8214725901ea510a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Aged
113 rdf:type schema:DefinedTerm
114 N62fecc5c807549e0965181fb72886060 rdf:first sg:person.013351427457.97
115 rdf:rest N76e2a2ec895f45bb820391dcda6fa7fc
116 N6a66cc6ea5bc426f9adef645ae183b99 rdf:first sg:person.0773565631.36
117 rdf:rest N62fecc5c807549e0965181fb72886060
118 N76e2a2ec895f45bb820391dcda6fa7fc rdf:first sg:person.011712252247.13
119 rdf:rest rdf:nil
120 N7c2ae6f523594b80b3af1b9e0258f43b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Plaque, Atherosclerotic
122 rdf:type schema:DefinedTerm
123 N80a6b7d7aaf74362a2912083ddadac62 schema:name nlm_unique_id
124 schema:value 100969716
125 rdf:type schema:PropertyValue
126 N80b928c93af04ae792b8677572077e28 schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
127 rdf:type schema:Organization
128 N85fa76951e8d4518be52af64b5b0864f rdf:first sg:person.0764104440.34
129 rdf:rest N37025e7fc3a849d794aecd60d0946fa0
130 N87d95200b3bf469c81c5b41000336c9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Multimodal Imaging
132 rdf:type schema:DefinedTerm
133 N8c9298de57fb4981a1f98782841df90d schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 N96e0a53281b4475b948a8471f835e0f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Radiopharmaceuticals
137 rdf:type schema:DefinedTerm
138 N9f0a116ba6e44e3e879face79de300a9 rdf:first sg:person.0630706251.91
139 rdf:rest Ncb9be4ab4cc643cda03a71150e7d85e0
140 Na32ec4d297d24a7a8dd3d5dc5d082e78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Fluorodeoxyglucose F18
142 rdf:type schema:DefinedTerm
143 Nb372fbe81ff34366befc01bcad5e25b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Endarterectomy, Carotid
145 rdf:type schema:DefinedTerm
146 Nb475631504c9446183bc22b766b2aea4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Positron-Emission Tomography
148 rdf:type schema:DefinedTerm
149 Nb488e8212f014a078f2f7585da36245f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Fibrosis
151 rdf:type schema:DefinedTerm
152 Nb65f942393424b75bd072405f446ce4e schema:name dimensions_id
153 schema:value pub.1040490379
154 rdf:type schema:PropertyValue
155 Nb7b04f4ea37d4e2cacda4a0e8c35474c schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
156 rdf:type schema:Organization
157 Nb9f4e0ef996a403687192739085c555f schema:volumeNumber 32
158 rdf:type schema:PublicationVolume
159 Nbe22bc94158e4461965d27884aff5467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Neovascularization, Pathologic
161 rdf:type schema:DefinedTerm
162 Nbfbe254c6eec47d2b99d6003cc338402 schema:name doi
163 schema:value 10.1007/s10554-015-0739-2
164 rdf:type schema:PropertyValue
165 Nbfc0f5faa67d45f3983c83fc997fa540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Aged, 80 and over
167 rdf:type schema:DefinedTerm
168 Ncb9be4ab4cc643cda03a71150e7d85e0 rdf:first sg:person.0677021451.77
169 rdf:rest Ne1e35c77acdc4c20ab1ceaefded2363b
170 Ncf0f7a687efc405d82059bbae294fc76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Vascular Calcification
172 rdf:type schema:DefinedTerm
173 Ncf95cfb8c2b845b19228f538f7c165ba schema:name Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
174 rdf:type schema:Organization
175 Nd0bbd39dfd3240f8b95e46261873a36f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Inflammation
177 rdf:type schema:DefinedTerm
178 Ndb888ee5d86940c19fd718791ecafc94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Middle Aged
180 rdf:type schema:DefinedTerm
181 Ne1e35c77acdc4c20ab1ceaefded2363b rdf:first sg:person.0630341646.74
182 rdf:rest N6a66cc6ea5bc426f9adef645ae183b99
183 Neab58d2a68e246f09484c48e3228ccd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Carotid Artery Diseases
185 rdf:type schema:DefinedTerm
186 Neb7b56fb07a740928077994b124b7d12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Humans
188 rdf:type schema:DefinedTerm
189 Nee1640e77acb4ae49f3b13da317d3d72 rdf:first sg:person.01055522151.42
190 rdf:rest N568a7942cb044ba18bfc7ef155a6a42e
191 Nff34a5b706f742d296b0d3595f4b1a6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Magnetic Resonance Imaging
193 rdf:type schema:DefinedTerm
194 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
195 schema:name Biological Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
198 schema:name Biochemistry and Cell Biology
199 rdf:type schema:DefinedTerm
200 sg:grant.2614340 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0739-2
201 rdf:type schema:MonetaryGrant
202 sg:journal.1025429 schema:issn 1569-5794
203 1573-0743
204 schema:name The International Journal of Cardiovascular Imaging
205 rdf:type schema:Periodical
206 sg:person.01055522151.42 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
207 schema:familyName Liu
208 schema:givenName Jin
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055522151.42
210 rdf:type schema:Person
211 sg:person.01064030670.72 schema:affiliation N403510863d6c4c9d9762a31398a3a055
212 schema:familyName Ferguson
213 schema:givenName Marina S.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064030670.72
215 rdf:type schema:Person
216 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
217 schema:familyName Yuan
218 schema:givenName Chun
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
220 rdf:type schema:Person
221 sg:person.01172021053.68 schema:affiliation N80b928c93af04ae792b8677572077e28
222 schema:familyName Caldwell
223 schema:givenName James H.
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172021053.68
225 rdf:type schema:Person
226 sg:person.013351427457.97 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
227 schema:familyName Hatsukami
228 schema:givenName Thomas S.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97
230 rdf:type schema:Person
231 sg:person.0630341646.74 schema:affiliation Nb7b04f4ea37d4e2cacda4a0e8c35474c
232 schema:familyName Miyaoka
233 schema:givenName Robert S.
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630341646.74
235 rdf:type schema:Person
236 sg:person.0630706251.91 schema:affiliation Ncf95cfb8c2b845b19228f538f7c165ba
237 schema:familyName Martinez-Malo
238 schema:givenName Vanesa
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630706251.91
240 rdf:type schema:Person
241 sg:person.0640513500.33 schema:affiliation N330153e27dbd421fa9efde2577f7cfc6
242 schema:familyName Kerwin
243 schema:givenName William S.
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33
245 rdf:type schema:Person
246 sg:person.0673624601.02 schema:affiliation N566517655d3240379cdb8ab11998e30a
247 schema:familyName Alessio
248 schema:givenName Adam M.
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673624601.02
250 rdf:type schema:Person
251 sg:person.0677021451.77 schema:affiliation N1c207e32aa93437c8ca019e83a6b8ab3
252 schema:familyName Pimentel
253 schema:givenName Kristi
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677021451.77
255 rdf:type schema:Person
256 sg:person.0764104440.34 schema:affiliation N2a660da5b712416392a5b50dd4e91a91
257 schema:familyName Hippe
258 schema:givenName Daniel S.
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
260 rdf:type schema:Person
261 sg:person.0773565631.36 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
262 schema:familyName Kohler
263 schema:givenName Ted R.
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773565631.36
265 rdf:type schema:Person
266 sg:pub.10.1007/s00259-002-1018-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039260132
267 https://doi.org/10.1007/s00259-002-1018-8
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s00259-006-0159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022162075
270 https://doi.org/10.1007/s00259-006-0159-6
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s12350-011-9460-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015317188
273 https://doi.org/10.1007/s12350-011-9460-2
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/s12350-015-0069-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013035992
276 https://doi.org/10.1007/s12350-015-0069-8
277 rdf:type schema:CreativeWork
278 sg:pub.10.1016/j.nuclcard.2005.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012668032
279 https://doi.org/10.1016/j.nuclcard.2005.03.002
280 rdf:type schema:CreativeWork
281 sg:pub.10.1038/nrcardio.2014.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032952210
282 https://doi.org/10.1038/nrcardio.2014.80
283 rdf:type schema:CreativeWork
284 https://app.dimensions.ai/details/publication/pub.1077094732 schema:CreativeWork
285 https://doi.org/10.1016/0046-8177(95)90148-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025505237
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1016/j.atherosclerosis.2005.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036790779
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1016/j.atherosclerosis.2010.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001965791
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1016/j.jacc.2006.05.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032429626
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.jacc.2007.01.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035102530
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.jacc.2011.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023793834
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/s0741-5214(99)70136-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025641205
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1056/nejm199901143400207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003372113
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1148/radiol.2293021168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007747507
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1161/01.cir.0000020548.60110.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020598728
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1161/01.cir.0000087480.94275.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030857438
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1161/01.cir.0000441139.02102.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040460683
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1161/atvbaha.108.179705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043208862
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1161/circimaging.110.959478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010566343
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1161/circimaging.112.975144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045730986
314 rdf:type schema:CreativeWork
315 https://doi.org/10.2967/jnumed.111.092866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016620523
316 rdf:type schema:CreativeWork
317 https://doi.org/10.2967/jnumed.111.093724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022440257
318 rdf:type schema:CreativeWork
319 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
320 schema:name Department of Bioengineering, University of Washington, Seattle, WA, USA
321 Department of Radiology, University of Washington, 850 Republican St, Box 358050, 98109, Seattle, WA, USA
322 Department of Surgery, Seattle VA Puget Sound Health Care System, Seattle, WA, USA
323 Department of Surgery, University of Washington, Seattle, WA, USA
324 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...