Intra-individual comparison of carotid and femoral atherosclerotic plaque features with in vivo MR plaque imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

Andreas Helck, Nicola Bianda, Gador Canton, Chun Yuan, Daniel S. Hippe, Maximilian F. Reiser, Augusto Gallino, Rolf Wyttenbach, Tobias Saam

ABSTRACT

The purpose of this study was to evaluate differences of plaque composition and morphology within the same patient in different vascular beds using non-invasive MR-plaque imaging. 28 patients (67.8 ± 7.4 years, 8 females) with high Framingham general cardiovascular disease 10-year risk score and mild-to-moderate atherosclerosis were consecutively included in the study. All subjects underwent a dedicated MRI-plaque imaging protocol using TOF and T1w and T2w black-blood-sequences with fat suppression at 1.5 T. The scan was centered on the carotid bulb of the carotid arteries and on the most stenotic lesion of the ipsilateral femoral artery, respectively. Plaques were classified according to the American Heart Association (AHA) lesion type classification and area measurements of lumen, wall and the major plaque components, such as calcification, necrotic core and hemorrhage were determined in consensus by two blinded reviewers using dedicated software (Cascade, Seattle, USA). Plaque components were recorded as maximum percentages of the wall area. Carotid arteries had larger maximum wall and smaller minimum lumen areas (p < 0.001) than femoral arteries, whereas no significant difference was find with respect to the max. NWI (p = 0.87). Prevalence of lipid-rich AHA lesion type IV/V and complicated AHA lesion type VI with hemorrhage/thrombus/fibrous cap rupture was significantly higher in the carotid arteries compared to the femoral arteries. Plaque composition as percentage of the vessel wall differed significantly between carotid and femoral arteries: Max. %necrotic core and max. %hemorrhage were significantly higher in the carotid arteries compared to the femoral arteries (p = 0.001 and p = 0.02, respectively). Max. %calcification did not differ significantly. Average stenotic degree of carotid arteries at duplex was 49.7 ± 12.5 (%). Non-invasive MR plaque-imaging is able to visualize differences in plaque composition across the vascular tree. We observed significant differences in quantitative and qualitative plaque features between carotid and femoral arteries within the same patient, which in the future could help to improve risk stratification in patients with atherosclerosis. More... »

PAGES

1611-1618

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-015-0737-4

DOI

http://dx.doi.org/10.1007/s10554-015-0737-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012057365

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26296806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Constriction, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Femoral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Doppler, Duplex", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute for Clinical Radiology, Ludwig Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helck", 
        "givenName": "Andreas", 
        "id": "sg:person.01321416344.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321416344.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ospedale San Giovanni Bellinzona", 
          "id": "https://www.grid.ac/institutes/grid.415065.3", 
          "name": [
            "Division of Cardiology and Vascular Medicine, Department of Internal Medicine, Ospedale San Giovanni Bellinzona (EOC), 6500, Bellinzona, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bianda", 
        "givenName": "Nicola", 
        "id": "sg:person.0640236003.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640236003.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canton", 
        "givenName": "Gador", 
        "id": "sg:person.01245523223.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245523223.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S.", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Clinical Radiology, Ludwig Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reiser", 
        "givenName": "Maximilian F.", 
        "id": "sg:person.01356220235.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356220235.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ospedale San Giovanni Bellinzona", 
          "id": "https://www.grid.ac/institutes/grid.415065.3", 
          "name": [
            "Division of Cardiology and Vascular Medicine, Department of Internal Medicine, Ospedale San Giovanni Bellinzona (EOC), 6500, Bellinzona, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallino", 
        "givenName": "Augusto", 
        "id": "sg:person.01016265074.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016265074.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ospedale San Giovanni Bellinzona", 
          "id": "https://www.grid.ac/institutes/grid.415065.3", 
          "name": [
            "Department of Radiology, Ospedale San Giovanni Bellinzona (EOC), 6500, Bellinzona, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wyttenbach", 
        "givenName": "Rolf", 
        "id": "sg:person.01174532116.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174532116.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Clinical Radiology, Ludwig Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saam", 
        "givenName": "Tobias", 
        "id": "sg:person.0636765452.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636765452.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-11-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003933091", 
          "https://doi.org/10.1186/1532-429x-11-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.486480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007637791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.486480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007637791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000028591.44554.f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.20.5.1177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009475391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvs.2007.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013557000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2014.08.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018918940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.5.3.293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020081887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10976640600843330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020247512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-013-0229-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021322417", 
          "https://doi.org/10.1007/s10554-013-0229-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010611530845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024804818", 
          "https://doi.org/10.1023/a:1010611530845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jns.2009.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025387343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.53.4.502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026317901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199202063260605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031737627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000140672.70862.5b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037572993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehr332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042025751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-010-9648-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045483051", 
          "https://doi.org/10.1007/s10554-010-9648-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-010-9648-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045483051", 
          "https://doi.org/10.1007/s10554-010-9648-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-011-9858-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049286838", 
          "https://doi.org/10.1007/s10554-011-9858-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1024/0301-1526.30.2.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056318587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.92.5.1355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063336553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.26.3.386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063341522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.28.6.1189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063342393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076960722", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081907744", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "The purpose of this study was to evaluate differences of plaque composition and morphology within the same patient in different vascular beds using non-invasive MR-plaque imaging. 28 patients (67.8 \u00b1 7.4 years, 8 females) with high Framingham general cardiovascular disease 10-year risk score and mild-to-moderate atherosclerosis were consecutively included in the study. All subjects underwent a dedicated MRI-plaque imaging protocol using TOF and T1w and T2w black-blood-sequences with fat suppression at 1.5 T. The scan was centered on the carotid bulb of the carotid arteries and on the most stenotic lesion of the ipsilateral femoral artery, respectively. Plaques were classified according to the American Heart Association (AHA) lesion type classification and area measurements of lumen, wall and the major plaque components, such as calcification, necrotic core and hemorrhage were determined in consensus by two blinded reviewers using dedicated software (Cascade, Seattle, USA). Plaque components were recorded as maximum percentages of the wall area. Carotid arteries had larger maximum wall and smaller minimum lumen areas (p < 0.001) than femoral arteries, whereas no significant difference was find with respect to the max. NWI (p = 0.87). Prevalence of lipid-rich AHA lesion type IV/V and complicated AHA lesion type VI with hemorrhage/thrombus/fibrous cap rupture was significantly higher in the carotid arteries compared to the femoral arteries. Plaque composition as percentage of the vessel wall differed significantly between carotid and femoral arteries: Max. %necrotic core and max. %hemorrhage were significantly higher in the carotid arteries compared to the femoral arteries (p = 0.001 and p = 0.02, respectively). Max. %calcification did not differ significantly. Average stenotic degree of carotid arteries at duplex was 49.7 \u00b1 12.5 (%). Non-invasive MR plaque-imaging is able to visualize differences in plaque composition across the vascular tree. We observed significant differences in quantitative and qualitative plaque features between carotid and femoral arteries within the same patient, which in the future could help to improve risk stratification in patients with atherosclerosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-015-0737-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Intra-individual comparison of carotid and femoral atherosclerotic plaque features with in vivo MR plaque imaging", 
    "pagination": "1611-1618", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "39726eb0139b26ce14006851ae1f43632a3858512679266768b85bf9a10f8078"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26296806"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-015-0737-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012057365"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-015-0737-4", 
      "https://app.dimensions.ai/details/publication/pub.1012057365"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10554-015-0737-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0737-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0737-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0737-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0737-4'


 

This table displays all metadata directly associated to this object as RDF triples.

298 TRIPLES      21 PREDICATES      75 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-015-0737-4 schema:about N016ad6cc41c04510bddc6fd2dbe166fc
2 N0c7b7e092f114656be4f9808b3b5552d
3 N41a4407c91f9465c8d70a2a1e4339371
4 N4730efceba2049f4ad586e7b667cecf2
5 N4dc9c30e4f89450e8293e57ace514b28
6 N61357339752b4457a7e3c91d0f288719
7 N675d31df2d03466895756634b7bf5c10
8 N8656c36ba7ba4ad290fd832343c31662
9 N87dd818c3f174e33865bab98d2bd6f55
10 N90ca4dfd5a8643a0b824e30124fb38b0
11 N9e1c3f235d1843b5972940c51a855a8d
12 Na15a3894ab334f02bffd69fc88b54ae0
13 Na3d43303144b463ea2764f95a7798920
14 Nb71cd9d4c8d0403cb455d301aa18f380
15 Nc780933f7bd1473fac156ba06c1b25af
16 Ne2762e608e214977ad1069b2c3346feb
17 Ne38f2ef1580f41979ccf896783e0ef7e
18 Ne40a4d6b23a242baa0ab21e5782cb5b2
19 Ne7621f644ad3445ebd8d84bedaea22ce
20 Ne797ff30be4c47dda727d7205499e152
21 Nf42822ba59794d828e7581e8ae6906b1
22 Nf4bf15fe30d841baa0cc2358f6813e31
23 anzsrc-for:11
24 anzsrc-for:1102
25 schema:author Nef9195dda78d498bb63e00d0b3a685b5
26 schema:citation sg:pub.10.1007/s10554-010-9648-6
27 sg:pub.10.1007/s10554-011-9858-6
28 sg:pub.10.1007/s10554-013-0229-3
29 sg:pub.10.1023/a:1010611530845
30 sg:pub.10.1186/1532-429x-11-41
31 https://app.dimensions.ai/details/publication/pub.1076960722
32 https://app.dimensions.ai/details/publication/pub.1081907744
33 https://doi.org/10.1016/j.atherosclerosis.2014.08.034
34 https://doi.org/10.1016/j.jns.2009.06.001
35 https://doi.org/10.1016/j.jvs.2007.10.037
36 https://doi.org/10.1024/0301-1526.30.2.101
37 https://doi.org/10.1056/nejm199202063260605
38 https://doi.org/10.1080/10976640600843330
39 https://doi.org/10.1093/eurheartj/ehr332
40 https://doi.org/10.1161/01.atv.0000155965.54679.79
41 https://doi.org/10.1161/01.atv.20.5.1177
42 https://doi.org/10.1161/01.atv.5.3.293
43 https://doi.org/10.1161/01.cir.0000028591.44554.f9
44 https://doi.org/10.1161/01.cir.0000140672.70862.5b
45 https://doi.org/10.1161/01.cir.92.5.1355
46 https://doi.org/10.1161/01.res.53.4.502
47 https://doi.org/10.1161/01.str.26.3.386
48 https://doi.org/10.1161/01.str.28.6.1189
49 https://doi.org/10.1161/strokeaha.107.486480
50 schema:datePublished 2015-12
51 schema:datePublishedReg 2015-12-01
52 schema:description The purpose of this study was to evaluate differences of plaque composition and morphology within the same patient in different vascular beds using non-invasive MR-plaque imaging. 28 patients (67.8 ± 7.4 years, 8 females) with high Framingham general cardiovascular disease 10-year risk score and mild-to-moderate atherosclerosis were consecutively included in the study. All subjects underwent a dedicated MRI-plaque imaging protocol using TOF and T1w and T2w black-blood-sequences with fat suppression at 1.5 T. The scan was centered on the carotid bulb of the carotid arteries and on the most stenotic lesion of the ipsilateral femoral artery, respectively. Plaques were classified according to the American Heart Association (AHA) lesion type classification and area measurements of lumen, wall and the major plaque components, such as calcification, necrotic core and hemorrhage were determined in consensus by two blinded reviewers using dedicated software (Cascade, Seattle, USA). Plaque components were recorded as maximum percentages of the wall area. Carotid arteries had larger maximum wall and smaller minimum lumen areas (p < 0.001) than femoral arteries, whereas no significant difference was find with respect to the max. NWI (p = 0.87). Prevalence of lipid-rich AHA lesion type IV/V and complicated AHA lesion type VI with hemorrhage/thrombus/fibrous cap rupture was significantly higher in the carotid arteries compared to the femoral arteries. Plaque composition as percentage of the vessel wall differed significantly between carotid and femoral arteries: Max. %necrotic core and max. %hemorrhage were significantly higher in the carotid arteries compared to the femoral arteries (p = 0.001 and p = 0.02, respectively). Max. %calcification did not differ significantly. Average stenotic degree of carotid arteries at duplex was 49.7 ± 12.5 (%). Non-invasive MR plaque-imaging is able to visualize differences in plaque composition across the vascular tree. We observed significant differences in quantitative and qualitative plaque features between carotid and femoral arteries within the same patient, which in the future could help to improve risk stratification in patients with atherosclerosis.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N9d037af0e28a42968f0962d858d16571
57 Na5c5eee3370444d79a0afe193e70d033
58 sg:journal.1025429
59 schema:name Intra-individual comparison of carotid and femoral atherosclerotic plaque features with in vivo MR plaque imaging
60 schema:pagination 1611-1618
61 schema:productId N0202b417cc4a4bf7a6a5760c77d41589
62 N5079d61e9542400fbda1cb569c30f9cc
63 Nc108c78867e04d79953d660254b7ed5d
64 Nc4292329db184f509f682417427b4b0b
65 Nc6b0cb9f569f4731ad30ae2b8464d279
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012057365
67 https://doi.org/10.1007/s10554-015-0737-4
68 schema:sdDatePublished 2019-04-10T16:42
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N3e6c9c63b0f844bdb11108b5478d4d04
71 schema:url http://link.springer.com/10.1007%2Fs10554-015-0737-4
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N016ad6cc41c04510bddc6fd2dbe166fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Humans
77 rdf:type schema:DefinedTerm
78 N0202b417cc4a4bf7a6a5760c77d41589 schema:name dimensions_id
79 schema:value pub.1012057365
80 rdf:type schema:PropertyValue
81 N0c7b7e092f114656be4f9808b3b5552d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Carotid Arteries
83 rdf:type schema:DefinedTerm
84 N137732cf40ba484ab56e31e468608ffa schema:name Institute for Clinical Radiology, Ludwig Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany
85 rdf:type schema:Organization
86 N15ab1374bd824e898c48fef849369d75 rdf:first sg:person.01245523223.13
87 rdf:rest N94f4dbb72db349ffbc59a333719e2def
88 N2d78dc849c78421f959c9775a34d75f7 rdf:first sg:person.01174532116.26
89 rdf:rest Nacc9de6362ef48188f340fcc21cb3a38
90 N3c704af493844647818141fcd6a6195c rdf:first sg:person.0640236003.29
91 rdf:rest N15ab1374bd824e898c48fef849369d75
92 N3e6c9c63b0f844bdb11108b5478d4d04 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N41a4407c91f9465c8d70a2a1e4339371 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Ultrasonography, Doppler, Duplex
96 rdf:type schema:DefinedTerm
97 N42e82e678fe54f6ab6bff77739f64a5e schema:name Institute for Clinical Radiology, Ludwig Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany
98 rdf:type schema:Organization
99 N4730efceba2049f4ad586e7b667cecf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Prospective Studies
101 rdf:type schema:DefinedTerm
102 N4dc9c30e4f89450e8293e57ace514b28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Constriction, Pathologic
104 rdf:type schema:DefinedTerm
105 N4fd35cac4008423690c5e83c6b5b3994 rdf:first sg:person.01356220235.06
106 rdf:rest N97a9a50b51204dc786b13dff1ffb9195
107 N5079d61e9542400fbda1cb569c30f9cc schema:name pubmed_id
108 schema:value 26296806
109 rdf:type schema:PropertyValue
110 N61357339752b4457a7e3c91d0f288719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Aged, 80 and over
112 rdf:type schema:DefinedTerm
113 N675d31df2d03466895756634b7bf5c10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Female
115 rdf:type schema:DefinedTerm
116 N6d16ffebaa3541f2b1190e6803fb594d schema:name Institute for Clinical Radiology, Ludwig Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany
117 rdf:type schema:Organization
118 N8656c36ba7ba4ad290fd832343c31662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Middle Aged
120 rdf:type schema:DefinedTerm
121 N87dd818c3f174e33865bab98d2bd6f55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Prognosis
123 rdf:type schema:DefinedTerm
124 N90ca4dfd5a8643a0b824e30124fb38b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Risk Assessment
126 rdf:type schema:DefinedTerm
127 N94f4dbb72db349ffbc59a333719e2def rdf:first sg:person.011712252247.13
128 rdf:rest Nb462094fed7d4c128f45ae72b7d93b8b
129 N97a9a50b51204dc786b13dff1ffb9195 rdf:first sg:person.01016265074.41
130 rdf:rest N2d78dc849c78421f959c9775a34d75f7
131 N9d037af0e28a42968f0962d858d16571 schema:volumeNumber 31
132 rdf:type schema:PublicationVolume
133 N9e1c3f235d1843b5972940c51a855a8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Male
135 rdf:type schema:DefinedTerm
136 Na15a3894ab334f02bffd69fc88b54ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Carotid Artery Diseases
138 rdf:type schema:DefinedTerm
139 Na3d43303144b463ea2764f95a7798920 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Image Interpretation, Computer-Assisted
141 rdf:type schema:DefinedTerm
142 Na5c5eee3370444d79a0afe193e70d033 schema:issueNumber 8
143 rdf:type schema:PublicationIssue
144 Nacc9de6362ef48188f340fcc21cb3a38 rdf:first sg:person.0636765452.03
145 rdf:rest rdf:nil
146 Nb462094fed7d4c128f45ae72b7d93b8b rdf:first sg:person.0764104440.34
147 rdf:rest N4fd35cac4008423690c5e83c6b5b3994
148 Nb71cd9d4c8d0403cb455d301aa18f380 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Software
150 rdf:type schema:DefinedTerm
151 Nc108c78867e04d79953d660254b7ed5d schema:name doi
152 schema:value 10.1007/s10554-015-0737-4
153 rdf:type schema:PropertyValue
154 Nc4292329db184f509f682417427b4b0b schema:name nlm_unique_id
155 schema:value 100969716
156 rdf:type schema:PropertyValue
157 Nc6b0cb9f569f4731ad30ae2b8464d279 schema:name readcube_id
158 schema:value 39726eb0139b26ce14006851ae1f43632a3858512679266768b85bf9a10f8078
159 rdf:type schema:PropertyValue
160 Nc780933f7bd1473fac156ba06c1b25af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Predictive Value of Tests
162 rdf:type schema:DefinedTerm
163 Ne2762e608e214977ad1069b2c3346feb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Aged
165 rdf:type schema:DefinedTerm
166 Ne38f2ef1580f41979ccf896783e0ef7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Plaque, Atherosclerotic
168 rdf:type schema:DefinedTerm
169 Ne40a4d6b23a242baa0ab21e5782cb5b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Necrosis
171 rdf:type schema:DefinedTerm
172 Ne7621f644ad3445ebd8d84bedaea22ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Severity of Illness Index
174 rdf:type schema:DefinedTerm
175 Ne797ff30be4c47dda727d7205499e152 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Femoral Artery
177 rdf:type schema:DefinedTerm
178 Nef9195dda78d498bb63e00d0b3a685b5 rdf:first sg:person.01321416344.03
179 rdf:rest N3c704af493844647818141fcd6a6195c
180 Nf42822ba59794d828e7581e8ae6906b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Atherosclerosis
182 rdf:type schema:DefinedTerm
183 Nf4bf15fe30d841baa0cc2358f6813e31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Magnetic Resonance Angiography
185 rdf:type schema:DefinedTerm
186 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
187 schema:name Medical and Health Sciences
188 rdf:type schema:DefinedTerm
189 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
190 schema:name Cardiorespiratory Medicine and Haematology
191 rdf:type schema:DefinedTerm
192 sg:journal.1025429 schema:issn 1569-5794
193 1573-0743
194 schema:name The International Journal of Cardiovascular Imaging
195 rdf:type schema:Periodical
196 sg:person.01016265074.41 schema:affiliation https://www.grid.ac/institutes/grid.415065.3
197 schema:familyName Gallino
198 schema:givenName Augusto
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016265074.41
200 rdf:type schema:Person
201 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
202 schema:familyName Yuan
203 schema:givenName Chun
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
205 rdf:type schema:Person
206 sg:person.01174532116.26 schema:affiliation https://www.grid.ac/institutes/grid.415065.3
207 schema:familyName Wyttenbach
208 schema:givenName Rolf
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174532116.26
210 rdf:type schema:Person
211 sg:person.01245523223.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
212 schema:familyName Canton
213 schema:givenName Gador
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245523223.13
215 rdf:type schema:Person
216 sg:person.01321416344.03 schema:affiliation N42e82e678fe54f6ab6bff77739f64a5e
217 schema:familyName Helck
218 schema:givenName Andreas
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321416344.03
220 rdf:type schema:Person
221 sg:person.01356220235.06 schema:affiliation N137732cf40ba484ab56e31e468608ffa
222 schema:familyName Reiser
223 schema:givenName Maximilian F.
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356220235.06
225 rdf:type schema:Person
226 sg:person.0636765452.03 schema:affiliation N6d16ffebaa3541f2b1190e6803fb594d
227 schema:familyName Saam
228 schema:givenName Tobias
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636765452.03
230 rdf:type schema:Person
231 sg:person.0640236003.29 schema:affiliation https://www.grid.ac/institutes/grid.415065.3
232 schema:familyName Bianda
233 schema:givenName Nicola
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640236003.29
235 rdf:type schema:Person
236 sg:person.0764104440.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
237 schema:familyName Hippe
238 schema:givenName Daniel S.
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
240 rdf:type schema:Person
241 sg:pub.10.1007/s10554-010-9648-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045483051
242 https://doi.org/10.1007/s10554-010-9648-6
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s10554-011-9858-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049286838
245 https://doi.org/10.1007/s10554-011-9858-6
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s10554-013-0229-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021322417
248 https://doi.org/10.1007/s10554-013-0229-3
249 rdf:type schema:CreativeWork
250 sg:pub.10.1023/a:1010611530845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024804818
251 https://doi.org/10.1023/a:1010611530845
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1532-429x-11-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003933091
254 https://doi.org/10.1186/1532-429x-11-41
255 rdf:type schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1076960722 schema:CreativeWork
257 https://app.dimensions.ai/details/publication/pub.1081907744 schema:CreativeWork
258 https://doi.org/10.1016/j.atherosclerosis.2014.08.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018918940
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.jns.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025387343
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.jvs.2007.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013557000
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1024/0301-1526.30.2.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056318587
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejm199202063260605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031737627
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1080/10976640600843330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020247512
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/eurheartj/ehr332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042025751
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1161/01.atv.0000155965.54679.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023396216
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1161/01.atv.20.5.1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009475391
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1161/01.atv.5.3.293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020081887
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1161/01.cir.0000028591.44554.f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264013
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1161/01.cir.0000140672.70862.5b schema:sameAs https://app.dimensions.ai/details/publication/pub.1037572993
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1161/01.cir.92.5.1355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063336553
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1161/01.res.53.4.502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026317901
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1161/01.str.26.3.386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063341522
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1161/01.str.28.6.1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063342393
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1161/strokeaha.107.486480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007637791
291 rdf:type schema:CreativeWork
292 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
293 schema:name Department of Radiology, University of Washington, Seattle, WA, USA
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.415065.3 schema:alternateName Ospedale San Giovanni Bellinzona
296 schema:name Department of Radiology, Ospedale San Giovanni Bellinzona (EOC), 6500, Bellinzona, Switzerland
297 Division of Cardiology and Vascular Medicine, Department of Internal Medicine, Ospedale San Giovanni Bellinzona (EOC), 6500, Bellinzona, Switzerland
298 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...