Clinical utility of quantitative bright spots analysis in patients with acute coronary syndrome: an optical coherence tomography study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07-23

AUTHORS

Yoshiyasu Minami, Jennifer E. Phipps, Taylor Hoyt, Thomas E. Milner, Daniel S. Ong, Tsunenari Soeda, Rocco Vergallo, Marc D. Feldman, Ik-Kyung Jang

ABSTRACT

To investigate the clinical significance of bright spots in coronary plaque detected by optical coherence tomography (OCT) in patients with coronary artery disease. We identified 112 patients [acute coronary syndromes (ACS): n = 50, stable angina pectoris (SAP): n = 62] who underwent OCT imaging of the culprit lesion. A novel OCT algorithm was applied to detect bright spots representing the juxtaposition of a variety of plaque components including macrophages. The density of bright spots within the most superficial 250 μm of the vessel wall was measured at the site of culprit lesion. Bright spot density in the culprit lesion was significantly higher in patients presenting with ACS compared to those presenting with SAP (0.51 ± 0.43 % vs. 0.37 ± 0.26 %, P = 0.04), particularly in the subgroup with ruptured culprit plaque (0.59 ± 0.52 %). Thin-cap fibroatheroma (TCFA) was associated with a trend towards a higher density of bright spots compared to non-TCFA plaques (0.57 ± 0.50 % vs. 0.41 ± 0.31 %, P = 0.08). Similar results were also obtained within 1000 μm depth. Positive linear correlation was demonstrated between bright spot density and hsCRP level (r = 0.45, P = 0.002). Using a novel algorithm, we demonstrated a significantly higher density of bright spots in the culprit lesions of patients presenting with ACS, particularly in case of plaque rupture, compared to those presenting with SAP. The density of bright spots also correlates with inflammatory status. These results suggest that the quantitative assessment of bright spot density may be useful in evaluating plaque vulnerability. More... »

PAGES

1479-1487

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-015-0714-y

DOI

http://dx.doi.org/10.1007/s10554-015-0714-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000027342

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26202158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acute Coronary Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angina, Stable", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rupture, Spontaneous", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Optical Coherence", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minami", 
        "givenName": "Yoshiyasu", 
        "id": "sg:person.01336006602.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336006602.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267309.9", 
          "name": [
            "University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phipps", 
        "givenName": "Jennifer E.", 
        "id": "sg:person.01264402266.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264402266.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267309.9", 
          "name": [
            "University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoyt", 
        "givenName": "Taylor", 
        "id": "sg:person.01255025140.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255025140.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, University of Texas, Austin, 107 W Dean Keeton Street Stop, 78712, Austin, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Biomedical Engineering, University of Texas, Austin, 107 W Dean Keeton Street Stop, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milner", 
        "givenName": "Thomas E.", 
        "id": "sg:person.0717720660.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717720660.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ong", 
        "givenName": "Daniel S.", 
        "id": "sg:person.0652434676.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652434676.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soeda", 
        "givenName": "Tsunenari", 
        "id": "sg:person.0746001440.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746001440.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vergallo", 
        "givenName": "Rocco", 
        "id": "sg:person.0746156445.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746156445.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Veterans Administration Health Care System, 7400 Merton Minter Blvd., 78229, San Antonio, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA", 
            "Veterans Administration Health Care System, 7400 Merton Minter Blvd., 78229, San Antonio, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feldman", 
        "givenName": "Marc D.", 
        "id": "sg:person.0646145554.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646145554.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Kyung Hee University, 23 Kyunghee-daero, Dongdaemun-gu, 130-701, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.289247.2", 
          "name": [
            "Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA", 
            "Division of Cardiology, Kyung Hee University, 23 Kyunghee-daero, Dongdaemun-gu, 130-701, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Ik-Kyung", 
        "id": "sg:person.0766106100.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766106100.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00392-014-0748-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720905", 
          "https://doi.org/10.1007/s00392-014-0748-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11926-012-0313-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048030138", 
          "https://doi.org/10.1007/s11926-012-0313-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07-23", 
    "datePublishedReg": "2015-07-23", 
    "description": "To investigate the clinical significance of bright spots in coronary plaque detected by optical coherence tomography (OCT) in patients with coronary artery disease. We identified 112 patients [acute coronary syndromes (ACS): n\u00a0=\u00a050, stable angina pectoris (SAP): n\u00a0=\u00a062] who underwent OCT imaging of the culprit lesion. A novel OCT algorithm was applied to detect bright spots representing the juxtaposition of a variety of plaque components including macrophages. The density of bright spots within the most superficial 250\u00a0\u03bcm of the vessel wall was measured at the site of culprit lesion. Bright spot density in the culprit lesion was significantly higher in patients presenting with ACS compared to those presenting with SAP (0.51\u00a0\u00b1\u00a00.43\u00a0% vs. 0.37\u00a0\u00b1\u00a00.26\u00a0%, P\u00a0=\u00a00.04), particularly in the subgroup with ruptured culprit plaque (0.59\u00a0\u00b1\u00a00.52\u00a0%). Thin-cap fibroatheroma (TCFA) was associated with a trend towards a higher density of bright spots compared to non-TCFA plaques (0.57\u00a0\u00b1\u00a00.50\u00a0% vs. 0.41\u00a0\u00b1\u00a00.31\u00a0%, P\u00a0=\u00a00.08). Similar results were also obtained within 1000\u00a0\u03bcm depth. Positive linear correlation was demonstrated between bright spot density and hsCRP level (r\u00a0=\u00a00.45, P\u00a0=\u00a00.002). Using a novel algorithm, we demonstrated a significantly higher density of bright spots in the culprit lesions of patients presenting with ACS, particularly in case of plaque rupture, compared to those presenting with SAP. The density of bright spots also correlates with inflammatory status. These results suggest that the quantitative assessment of bright spot density may be useful in evaluating plaque vulnerability.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10554-015-0714-y", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.100065642", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2684709", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2401274", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "culprit lesion", 
      "thin-cap fibroatheroma", 
      "optical coherence tomography", 
      "optical coherence tomography study", 
      "acute coronary syndrome", 
      "coronary artery disease", 
      "hsCRP levels", 
      "coronary syndrome", 
      "culprit plaques", 
      "artery disease", 
      "inflammatory status", 
      "coronary plaques", 
      "clinical significance", 
      "plaque rupture", 
      "plaque vulnerability", 
      "clinical utility", 
      "patients", 
      "bright spot density", 
      "coherence tomography", 
      "lesions", 
      "plaque components", 
      "tomography study", 
      "plaques", 
      "vessel wall", 
      "OCT imaging", 
      "positive linear correlation", 
      "OCT algorithm", 
      "ACS", 
      "similar results", 
      "fibroatheroma", 
      "syndrome", 
      "quantitative assessment", 
      "disease", 
      "macrophages", 
      "tomography", 
      "subgroups", 
      "rupture", 
      "status", 
      "imaging", 
      "linear correlation", 
      "assessment", 
      "levels", 
      "spot density", 
      "significance", 
      "cases", 
      "study", 
      "correlation", 
      "utility", 
      "sap", 
      "results", 
      "high density", 
      "spots", 
      "wall", 
      "sites", 
      "vulnerability", 
      "analysis", 
      "spot analysis", 
      "trends", 
      "bright spot analysis", 
      "variety", 
      "bright spots", 
      "components", 
      "density", 
      "depth", 
      "juxtaposition", 
      "algorithm", 
      "novel algorithm"
    ], 
    "name": "Clinical utility of quantitative bright spots analysis in patients with acute coronary syndrome: an optical coherence tomography study", 
    "pagination": "1479-1487", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000027342"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-015-0714-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26202158"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-015-0714-y", 
      "https://app.dimensions.ai/details/publication/pub.1000027342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_670.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10554-015-0714-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0714-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0714-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0714-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0714-y'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      114 URIs      104 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-015-0714-y schema:about N0633569b6141411fa3a205b517961064
2 N0e64864282d94dbeabf804303a4c1193
3 N1b4e0e04a35347f1b149808739a91b9a
4 N396c6437fd8a44209919c67ecad90634
5 N50602aa5394d4881925d36928552b384
6 N57d634870b734a099bc6e05fb25c7e95
7 N5b40590ae83747a080c10777fd5ee248
8 N600b2f6b122f46d0b197730dd1c1a392
9 N6504a024a85a4856b9d188efb226577a
10 N7be032d67899456fbc2b45a556d989ef
11 N8176c50cdc2a448da4416a3d1f942d37
12 N8301fb883f204a459b18dbb82c416ee4
13 N8a0ebcf7772b409a93b81ef370ea0f29
14 N8e32b4a658ad4e659489a1ca58945f0c
15 Na0a5cf581409448880d48e7e92e98302
16 Nbe072db2379148cb88c86993e8809b4a
17 Ncd286e31435e4f24997551f4fbba3d24
18 Nd6da39419b3d4b09a97dbe347a6cdd3c
19 Nf6e61719ccd44ba8a5c6052c4bfc00dc
20 Nffd4477c29314814bf8d3000648dfaac
21 anzsrc-for:11
22 anzsrc-for:1102
23 schema:author N14938e66ca4f4306af8eca8a21a9bcc4
24 schema:citation sg:pub.10.1007/s00392-014-0748-5
25 sg:pub.10.1007/s11926-012-0313-z
26 schema:datePublished 2015-07-23
27 schema:datePublishedReg 2015-07-23
28 schema:description To investigate the clinical significance of bright spots in coronary plaque detected by optical coherence tomography (OCT) in patients with coronary artery disease. We identified 112 patients [acute coronary syndromes (ACS): n = 50, stable angina pectoris (SAP): n = 62] who underwent OCT imaging of the culprit lesion. A novel OCT algorithm was applied to detect bright spots representing the juxtaposition of a variety of plaque components including macrophages. The density of bright spots within the most superficial 250 μm of the vessel wall was measured at the site of culprit lesion. Bright spot density in the culprit lesion was significantly higher in patients presenting with ACS compared to those presenting with SAP (0.51 ± 0.43 % vs. 0.37 ± 0.26 %, P = 0.04), particularly in the subgroup with ruptured culprit plaque (0.59 ± 0.52 %). Thin-cap fibroatheroma (TCFA) was associated with a trend towards a higher density of bright spots compared to non-TCFA plaques (0.57 ± 0.50 % vs. 0.41 ± 0.31 %, P = 0.08). Similar results were also obtained within 1000 μm depth. Positive linear correlation was demonstrated between bright spot density and hsCRP level (r = 0.45, P = 0.002). Using a novel algorithm, we demonstrated a significantly higher density of bright spots in the culprit lesions of patients presenting with ACS, particularly in case of plaque rupture, compared to those presenting with SAP. The density of bright spots also correlates with inflammatory status. These results suggest that the quantitative assessment of bright spot density may be useful in evaluating plaque vulnerability.
29 schema:genre article
30 schema:isAccessibleForFree false
31 schema:isPartOf N4a115477bfc742eaa91373ef27141619
32 Nd4eff2b769e648868ac198a8df024308
33 sg:journal.1025429
34 schema:keywords ACS
35 OCT algorithm
36 OCT imaging
37 acute coronary syndrome
38 algorithm
39 analysis
40 artery disease
41 assessment
42 bright spot analysis
43 bright spot density
44 bright spots
45 cases
46 clinical significance
47 clinical utility
48 coherence tomography
49 components
50 coronary artery disease
51 coronary plaques
52 coronary syndrome
53 correlation
54 culprit lesion
55 culprit plaques
56 density
57 depth
58 disease
59 fibroatheroma
60 high density
61 hsCRP levels
62 imaging
63 inflammatory status
64 juxtaposition
65 lesions
66 levels
67 linear correlation
68 macrophages
69 novel algorithm
70 optical coherence tomography
71 optical coherence tomography study
72 patients
73 plaque components
74 plaque rupture
75 plaque vulnerability
76 plaques
77 positive linear correlation
78 quantitative assessment
79 results
80 rupture
81 sap
82 significance
83 similar results
84 sites
85 spot analysis
86 spot density
87 spots
88 status
89 study
90 subgroups
91 syndrome
92 thin-cap fibroatheroma
93 tomography
94 tomography study
95 trends
96 utility
97 variety
98 vessel wall
99 vulnerability
100 wall
101 schema:name Clinical utility of quantitative bright spots analysis in patients with acute coronary syndrome: an optical coherence tomography study
102 schema:pagination 1479-1487
103 schema:productId N4fa0d2b00966432a83cdb2ea30b41833
104 N9638d4cd2aac48af897647a3339691fa
105 Nc4e4d80246ac4231b4f81ef0bc27171f
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000027342
107 https://doi.org/10.1007/s10554-015-0714-y
108 schema:sdDatePublished 2022-10-01T06:41
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N83150cb9d17349d98c9e4abbcca29ca8
111 schema:url https://doi.org/10.1007/s10554-015-0714-y
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N0633569b6141411fa3a205b517961064 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Middle Aged
117 rdf:type schema:DefinedTerm
118 N0e64864282d94dbeabf804303a4c1193 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Registries
120 rdf:type schema:DefinedTerm
121 N14938e66ca4f4306af8eca8a21a9bcc4 rdf:first sg:person.01336006602.59
122 rdf:rest Nf3b8de65443e4cc9a2ed30fdcf86361e
123 N1b4e0e04a35347f1b149808739a91b9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Pilot Projects
125 rdf:type schema:DefinedTerm
126 N2362308abd024fe6b22405724c56c70e rdf:first sg:person.0652434676.93
127 rdf:rest Nac45b943781843e98c758e0d721d214e
128 N37218861cf7149828a1b86ca01854b46 rdf:first sg:person.0717720660.91
129 rdf:rest N2362308abd024fe6b22405724c56c70e
130 N396c6437fd8a44209919c67ecad90634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Chi-Square Distribution
132 rdf:type schema:DefinedTerm
133 N4a115477bfc742eaa91373ef27141619 schema:issueNumber 8
134 rdf:type schema:PublicationIssue
135 N4fa0d2b00966432a83cdb2ea30b41833 schema:name pubmed_id
136 schema:value 26202158
137 rdf:type schema:PropertyValue
138 N50602aa5394d4881925d36928552b384 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Acute Coronary Syndrome
140 rdf:type schema:DefinedTerm
141 N51c953c400d846d09f608a692991efe5 rdf:first sg:person.01255025140.37
142 rdf:rest N37218861cf7149828a1b86ca01854b46
143 N57d634870b734a099bc6e05fb25c7e95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Rupture, Spontaneous
145 rdf:type schema:DefinedTerm
146 N5b40590ae83747a080c10777fd5ee248 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Female
148 rdf:type schema:DefinedTerm
149 N600b2f6b122f46d0b197730dd1c1a392 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Prognosis
151 rdf:type schema:DefinedTerm
152 N6504a024a85a4856b9d188efb226577a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Coronary Vessels
154 rdf:type schema:DefinedTerm
155 N7be032d67899456fbc2b45a556d989ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Image Interpretation, Computer-Assisted
157 rdf:type schema:DefinedTerm
158 N8176c50cdc2a448da4416a3d1f942d37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Tomography, Optical Coherence
160 rdf:type schema:DefinedTerm
161 N8301fb883f204a459b18dbb82c416ee4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Fibrosis
163 rdf:type schema:DefinedTerm
164 N83150cb9d17349d98c9e4abbcca29ca8 schema:name Springer Nature - SN SciGraph project
165 rdf:type schema:Organization
166 N8a0ebcf7772b409a93b81ef370ea0f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Angina, Stable
168 rdf:type schema:DefinedTerm
169 N8e32b4a658ad4e659489a1ca58945f0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Male
171 rdf:type schema:DefinedTerm
172 N9638d4cd2aac48af897647a3339691fa schema:name doi
173 schema:value 10.1007/s10554-015-0714-y
174 rdf:type schema:PropertyValue
175 Na0a5cf581409448880d48e7e92e98302 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Predictive Value of Tests
177 rdf:type schema:DefinedTerm
178 Nac45b943781843e98c758e0d721d214e rdf:first sg:person.0746001440.76
179 rdf:rest Nd94af85ff8274829a5bdc8741b3f98e0
180 Nbe072db2379148cb88c86993e8809b4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Plaque, Atherosclerotic
182 rdf:type schema:DefinedTerm
183 Nc4e4d80246ac4231b4f81ef0bc27171f schema:name dimensions_id
184 schema:value pub.1000027342
185 rdf:type schema:PropertyValue
186 Ncd286e31435e4f24997551f4fbba3d24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Aged
188 rdf:type schema:DefinedTerm
189 Nd08555bbbeda4e4f963237c00e233f10 rdf:first sg:person.0766106100.00
190 rdf:rest rdf:nil
191 Nd4eff2b769e648868ac198a8df024308 schema:volumeNumber 31
192 rdf:type schema:PublicationVolume
193 Nd6da39419b3d4b09a97dbe347a6cdd3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Algorithms
195 rdf:type schema:DefinedTerm
196 Nd94af85ff8274829a5bdc8741b3f98e0 rdf:first sg:person.0746156445.57
197 rdf:rest Ndb836890366d41fbba80aa2c1aade571
198 Ndb836890366d41fbba80aa2c1aade571 rdf:first sg:person.0646145554.52
199 rdf:rest Nd08555bbbeda4e4f963237c00e233f10
200 Nf3b8de65443e4cc9a2ed30fdcf86361e rdf:first sg:person.01264402266.72
201 rdf:rest N51c953c400d846d09f608a692991efe5
202 Nf6e61719ccd44ba8a5c6052c4bfc00dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Humans
204 rdf:type schema:DefinedTerm
205 Nffd4477c29314814bf8d3000648dfaac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Linear Models
207 rdf:type schema:DefinedTerm
208 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
209 schema:name Medical and Health Sciences
210 rdf:type schema:DefinedTerm
211 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
212 schema:name Cardiorespiratory Medicine and Haematology
213 rdf:type schema:DefinedTerm
214 sg:grant.100065642 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0714-y
215 rdf:type schema:MonetaryGrant
216 sg:grant.2401274 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0714-y
217 rdf:type schema:MonetaryGrant
218 sg:grant.2684709 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0714-y
219 rdf:type schema:MonetaryGrant
220 sg:journal.1025429 schema:issn 1569-5794
221 1573-0743
222 schema:name The International Journal of Cardiovascular Imaging
223 schema:publisher Springer Nature
224 rdf:type schema:Periodical
225 sg:person.01255025140.37 schema:affiliation grid-institutes:grid.267309.9
226 schema:familyName Hoyt
227 schema:givenName Taylor
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255025140.37
229 rdf:type schema:Person
230 sg:person.01264402266.72 schema:affiliation grid-institutes:grid.267309.9
231 schema:familyName Phipps
232 schema:givenName Jennifer E.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264402266.72
234 rdf:type schema:Person
235 sg:person.01336006602.59 schema:affiliation grid-institutes:grid.38142.3c
236 schema:familyName Minami
237 schema:givenName Yoshiyasu
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336006602.59
239 rdf:type schema:Person
240 sg:person.0646145554.52 schema:affiliation grid-institutes:None
241 schema:familyName Feldman
242 schema:givenName Marc D.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646145554.52
244 rdf:type schema:Person
245 sg:person.0652434676.93 schema:affiliation grid-institutes:grid.38142.3c
246 schema:familyName Ong
247 schema:givenName Daniel S.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652434676.93
249 rdf:type schema:Person
250 sg:person.0717720660.91 schema:affiliation grid-institutes:grid.89336.37
251 schema:familyName Milner
252 schema:givenName Thomas E.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717720660.91
254 rdf:type schema:Person
255 sg:person.0746001440.76 schema:affiliation grid-institutes:grid.38142.3c
256 schema:familyName Soeda
257 schema:givenName Tsunenari
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746001440.76
259 rdf:type schema:Person
260 sg:person.0746156445.57 schema:affiliation grid-institutes:grid.38142.3c
261 schema:familyName Vergallo
262 schema:givenName Rocco
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746156445.57
264 rdf:type schema:Person
265 sg:person.0766106100.00 schema:affiliation grid-institutes:grid.289247.2
266 schema:familyName Jang
267 schema:givenName Ik-Kyung
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766106100.00
269 rdf:type schema:Person
270 sg:pub.10.1007/s00392-014-0748-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720905
271 https://doi.org/10.1007/s00392-014-0748-5
272 rdf:type schema:CreativeWork
273 sg:pub.10.1007/s11926-012-0313-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048030138
274 https://doi.org/10.1007/s11926-012-0313-z
275 rdf:type schema:CreativeWork
276 grid-institutes:None schema:alternateName Veterans Administration Health Care System, 7400 Merton Minter Blvd., 78229, San Antonio, TX, USA
277 schema:name University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA
278 Veterans Administration Health Care System, 7400 Merton Minter Blvd., 78229, San Antonio, TX, USA
279 rdf:type schema:Organization
280 grid-institutes:grid.267309.9 schema:alternateName University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA
281 schema:name University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, 78229, San Antonio, TX, USA
282 rdf:type schema:Organization
283 grid-institutes:grid.289247.2 schema:alternateName Division of Cardiology, Kyung Hee University, 23 Kyunghee-daero, Dongdaemun-gu, 130-701, Seoul, South Korea
284 schema:name Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA
285 Division of Cardiology, Kyung Hee University, 23 Kyunghee-daero, Dongdaemun-gu, 130-701, Seoul, South Korea
286 rdf:type schema:Organization
287 grid-institutes:grid.38142.3c schema:alternateName Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA
288 schema:name Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, 55 Fruit Street, 02114, Boston, MA, USA
289 rdf:type schema:Organization
290 grid-institutes:grid.89336.37 schema:alternateName Department of Biomedical Engineering, University of Texas, Austin, 107 W Dean Keeton Street Stop, 78712, Austin, TX, USA
291 schema:name Department of Biomedical Engineering, University of Texas, Austin, 107 W Dean Keeton Street Stop, 78712, Austin, TX, USA
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...