In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

Taku Yoneyama, Jie Sun, Daniel S. Hippe, Niranjan Balu, Dongxiang Xu, William S. Kerwin, Thomas S. Hatsukami, Chun Yuan

ABSTRACT

Automatic in vivo segmentation of multicontrast (multisequence) carotid magnetic resonance for plaque composition has been proposed as a substitute for manual review to save time and reduce inter-reader variability in large-scale or multicenter studies. Using serial images from a prospective longitudinal study, we sought to compare a semi-automatic approach versus expert human reading in analyzing carotid atherosclerosis progression. Baseline and 6-month follow-up multicontrast carotid images from 59 asymptomatic subjects with 16-79 % carotid stenosis were reviewed by both trained radiologists with 2-4 years of specialized experience in carotid plaque characterization with MRI and a previously reported automatic atherosclerotic plaque segmentation algorithm, referred to as morphology-enhanced probabilistic plaque segmentation (MEPPS). Agreement on measurements from individual time points, as well as on compositional changes, was assessed using the intraclass correlation coefficient (ICC). There was good agreement between manual and MEPPS reviews on individual time points for calcification (CA) (area: ICC; 0.85-0.91; volume: ICC; 0.92-0.95) and lipid-rich necrotic core (LRNC) (area: ICC; 0.78-0.82; volume: ICC; 0.84-0.86). For compositional changes, agreement was good for CA volume change (ICC; 0.78) and moderate for LRNC volume change (ICC; 0.49). Factors associated with LRNC progression as detected by MEPPS review included intraplaque hemorrhage (positive association) and reduction in low-density lipoprotein cholesterol (negative association), which were consistent with previous findings from manual review. Automatic classifier for plaque composition produced results similar to expert manual review in a prospective serial MRI study of carotid atherosclerosis progression. Such automatic classification tools may be beneficial in large-scale multicenter studies by reducing image analysis time and avoiding bias between human reviewers. More... »

PAGES

73-81

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-015-0704-0

DOI

http://dx.doi.org/10.1007/s10554-015-0704-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017371021

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26169389


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, 8-1, Kawadachou, 1628666, Shinjukuku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoneyama", 
        "givenName": "Taku", 
        "id": "sg:person.01315764117.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315764117.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jie", 
        "id": "sg:person.0744610650.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S.", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balu", 
        "givenName": "Niranjan", 
        "id": "sg:person.0665143653.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Dongxiang", 
        "id": "sg:person.01061037250.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061037250.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kerwin", 
        "givenName": "William S.", 
        "id": "sg:person.0640513500.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Surgery, Harborview Medical Center, University of Washington, 325 9th Ave, 98104, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatsukami", 
        "givenName": "Thomas S.", 
        "id": "sg:person.013351427457.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2342032101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000428417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003874461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13121702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007582008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011289493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-003-0030-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012447112", 
          "https://doi.org/10.1007/s10334-003-0030-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.589044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014132344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000196985.38701.0c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018716413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000196985.38701.0c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018716413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2007.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019606992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2232010659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019829323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000204638.91099.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000204638.91099.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022499569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024783612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.109.575670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025545921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.109.575670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025545921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2012.10.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028607376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029191131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029191131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.108.823922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029937954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.108.823922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029937954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030874778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030874778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.20.5.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034218402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-014-0532-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034813084", 
          "https://doi.org/10.1007/s10554-014-0532-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.528174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038078333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039529318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a3028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043833248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046344901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejvs.2004.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051104553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1078-5884(04)00219-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054680961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511802843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098714359"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "Automatic in vivo segmentation of multicontrast (multisequence) carotid magnetic resonance for plaque composition has been proposed as a substitute for manual review to save time and reduce inter-reader variability in large-scale or multicenter studies. Using serial images from a prospective longitudinal study, we sought to compare a semi-automatic approach versus expert human reading in analyzing carotid atherosclerosis progression. Baseline and 6-month follow-up multicontrast carotid images from 59 asymptomatic subjects with 16-79 % carotid stenosis were reviewed by both trained radiologists with 2-4 years of specialized experience in carotid plaque characterization with MRI and a previously reported automatic atherosclerotic plaque segmentation algorithm, referred to as morphology-enhanced probabilistic plaque segmentation (MEPPS). Agreement on measurements from individual time points, as well as on compositional changes, was assessed using the intraclass correlation coefficient (ICC). There was good agreement between manual and MEPPS reviews on individual time points for calcification (CA) (area: ICC; 0.85-0.91; volume: ICC; 0.92-0.95) and lipid-rich necrotic core (LRNC) (area: ICC; 0.78-0.82; volume: ICC; 0.84-0.86). For compositional changes, agreement was good for CA volume change (ICC; 0.78) and moderate for LRNC volume change (ICC; 0.49). Factors associated with LRNC progression as detected by MEPPS review included intraplaque hemorrhage (positive association) and reduction in low-density lipoprotein cholesterol (negative association), which were consistent with previous findings from manual review. Automatic classifier for plaque composition produced results similar to expert manual review in a prospective serial MRI study of carotid atherosclerosis progression. Such automatic classification tools may be beneficial in large-scale multicenter studies by reducing image analysis time and avoiding bias between human reviewers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-015-0704-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2542913", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2535620", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience", 
    "pagination": "73-81", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52c32a71d820d2683cc60432b8f7bbf2557372b8156571d8df673dcdb3ac25e2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26169389"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-015-0704-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017371021"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-015-0704-0", 
      "https://app.dimensions.ai/details/publication/pub.1017371021"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10554-015-0704-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0704-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0704-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0704-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0704-0'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      78 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-015-0704-0 schema:about N054c6f67a28b4195be784359c0aeeec4
2 N38d6396f555747fd83b786ff1f9996ce
3 N3a2e28af7efe4a7a98ea3dfc97f02a12
4 N5c7df1f49aea4854907fba8c367f6f96
5 N6a3a265ea7624b25a4fcc348fb1e770c
6 N6de366cb2c224e9b8731f4bc7c10969d
7 N6e4ede5701d14ab0965562d0525ca15f
8 N6e71e91c89254cfd8fc2db71f40d5e15
9 N78fb90057fa64f409a9363a991b9c516
10 Nbf388fa9a9e3419294209711784b47d6
11 Nc0ba5ee993dc47b98e64ac6fa9151bd7
12 Ncec8f816094a4db69abc8bdc8f1f3717
13 Nd232ea3ea8784368b170b816c71639bb
14 Nd2d376c875c640f296ceab2fb807149b
15 Ndadd897fb167452e9e3fcbea8eb862b8
16 Nf36de6307ec64903b984c9a708ca4380
17 Nfd2d8b5f60e64dfb983447e28dffcc32
18 anzsrc-for:08
19 anzsrc-for:0801
20 schema:author N9938f9a68e4d47dcb8320315937a8761
21 schema:citation sg:pub.10.1007/s10334-003-0030-8
22 sg:pub.10.1007/s10554-014-0532-7
23 https://doi.org/10.1002/jmri.20599
24 https://doi.org/10.1002/jmri.21360
25 https://doi.org/10.1002/jmri.21529
26 https://doi.org/10.1002/jmri.22043
27 https://doi.org/10.1002/jmri.22886
28 https://doi.org/10.1002/jmri.23918
29 https://doi.org/10.1002/mrm.20814
30 https://doi.org/10.1002/mrm.20828
31 https://doi.org/10.1016/j.ahj.2007.11.018
32 https://doi.org/10.1016/j.amjcard.2014.08.001
33 https://doi.org/10.1016/j.ejvs.2004.05.001
34 https://doi.org/10.1016/j.jacc.2012.10.054
35 https://doi.org/10.1016/j.jcmg.2011.06.013
36 https://doi.org/10.1016/s1078-5884(04)00219-9
37 https://doi.org/10.1017/cbo9780511802843
38 https://doi.org/10.1097/rmr.0b013e3181598d9d
39 https://doi.org/10.1148/radiol.13121702
40 https://doi.org/10.1148/radiol.2232010659
41 https://doi.org/10.1148/radiol.2342032101
42 https://doi.org/10.1161/01.atv.0000149867.61851.31
43 https://doi.org/10.1161/01.atv.0000155965.54679.79
44 https://doi.org/10.1161/01.atv.20.5.1262
45 https://doi.org/10.1161/01.str.0000196985.38701.0c
46 https://doi.org/10.1161/01.str.0000204638.91099.91
47 https://doi.org/10.1161/circimaging.108.823922
48 https://doi.org/10.1161/circulationaha.104.528174
49 https://doi.org/10.1161/circulationaha.105.589044
50 https://doi.org/10.1161/strokeaha.106.479139
51 https://doi.org/10.1161/strokeaha.109.575670
52 https://doi.org/10.3174/ajnr.a3028
53 schema:datePublished 2016-01
54 schema:datePublishedReg 2016-01-01
55 schema:description Automatic in vivo segmentation of multicontrast (multisequence) carotid magnetic resonance for plaque composition has been proposed as a substitute for manual review to save time and reduce inter-reader variability in large-scale or multicenter studies. Using serial images from a prospective longitudinal study, we sought to compare a semi-automatic approach versus expert human reading in analyzing carotid atherosclerosis progression. Baseline and 6-month follow-up multicontrast carotid images from 59 asymptomatic subjects with 16-79 % carotid stenosis were reviewed by both trained radiologists with 2-4 years of specialized experience in carotid plaque characterization with MRI and a previously reported automatic atherosclerotic plaque segmentation algorithm, referred to as morphology-enhanced probabilistic plaque segmentation (MEPPS). Agreement on measurements from individual time points, as well as on compositional changes, was assessed using the intraclass correlation coefficient (ICC). There was good agreement between manual and MEPPS reviews on individual time points for calcification (CA) (area: ICC; 0.85-0.91; volume: ICC; 0.92-0.95) and lipid-rich necrotic core (LRNC) (area: ICC; 0.78-0.82; volume: ICC; 0.84-0.86). For compositional changes, agreement was good for CA volume change (ICC; 0.78) and moderate for LRNC volume change (ICC; 0.49). Factors associated with LRNC progression as detected by MEPPS review included intraplaque hemorrhage (positive association) and reduction in low-density lipoprotein cholesterol (negative association), which were consistent with previous findings from manual review. Automatic classifier for plaque composition produced results similar to expert manual review in a prospective serial MRI study of carotid atherosclerosis progression. Such automatic classification tools may be beneficial in large-scale multicenter studies by reducing image analysis time and avoiding bias between human reviewers.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N7aec893aa073408ebd4ddb8f9b69c6fe
60 N9b2935c568bf40819e1e58958f4db23f
61 sg:journal.1025429
62 schema:name In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience
63 schema:pagination 73-81
64 schema:productId N03c1f31b1fa148759a8ce1c80619e503
65 N04654c0a96444238836a2d6e9540a472
66 N1ab934d454f843b59fc782e35226292e
67 Nea80aeb0829f4166afbae90a964e789e
68 Nf7c01ce4742945ceafe93b2b0190c2e1
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017371021
70 https://doi.org/10.1007/s10554-015-0704-0
71 schema:sdDatePublished 2019-04-10T16:42
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N901f6f35b7294a67a6c59d882b13874e
74 schema:url http://link.springer.com/10.1007%2Fs10554-015-0704-0
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N03c1f31b1fa148759a8ce1c80619e503 schema:name dimensions_id
79 schema:value pub.1017371021
80 rdf:type schema:PropertyValue
81 N04654c0a96444238836a2d6e9540a472 schema:name doi
82 schema:value 10.1007/s10554-015-0704-0
83 rdf:type schema:PropertyValue
84 N054c6f67a28b4195be784359c0aeeec4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Carotid Stenosis
86 rdf:type schema:DefinedTerm
87 N0be4b8baadd14375b0cd31d7fad7e0ae rdf:first sg:person.01061037250.78
88 rdf:rest N8a6a9e3dad2c4e36ac85d341a720e1e1
89 N103b64e7eea6451dab73184cdf9b4a2e rdf:first sg:person.011712252247.13
90 rdf:rest rdf:nil
91 N1ab934d454f843b59fc782e35226292e schema:name readcube_id
92 schema:value 52c32a71d820d2683cc60432b8f7bbf2557372b8156571d8df673dcdb3ac25e2
93 rdf:type schema:PropertyValue
94 N27cf3465a3a24d09a29daa12996b01a0 rdf:first sg:person.0665143653.55
95 rdf:rest N0be4b8baadd14375b0cd31d7fad7e0ae
96 N38d6396f555747fd83b786ff1f9996ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Time Factors
98 rdf:type schema:DefinedTerm
99 N3a2e28af7efe4a7a98ea3dfc97f02a12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Observer Variation
101 rdf:type schema:DefinedTerm
102 N5aadb5d214a3440cb474b34f21764351 rdf:first sg:person.013351427457.97
103 rdf:rest N103b64e7eea6451dab73184cdf9b4a2e
104 N5c7df1f49aea4854907fba8c367f6f96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Reproducibility of Results
106 rdf:type schema:DefinedTerm
107 N6a3a265ea7624b25a4fcc348fb1e770c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N6de366cb2c224e9b8731f4bc7c10969d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Automation
112 rdf:type schema:DefinedTerm
113 N6e4ede5701d14ab0965562d0525ca15f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Magnetic Resonance Angiography
115 rdf:type schema:DefinedTerm
116 N6e71e91c89254cfd8fc2db71f40d5e15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Plaque, Atherosclerotic
118 rdf:type schema:DefinedTerm
119 N78fb90057fa64f409a9363a991b9c516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Prospective Studies
121 rdf:type schema:DefinedTerm
122 N7aec893aa073408ebd4ddb8f9b69c6fe schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 N8a6a9e3dad2c4e36ac85d341a720e1e1 rdf:first sg:person.0640513500.33
125 rdf:rest N5aadb5d214a3440cb474b34f21764351
126 N901f6f35b7294a67a6c59d882b13874e schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N9938f9a68e4d47dcb8320315937a8761 rdf:first sg:person.01315764117.02
129 rdf:rest Necb495517cf5481e9c23760006fc7bc4
130 N9b2935c568bf40819e1e58958f4db23f schema:volumeNumber 32
131 rdf:type schema:PublicationVolume
132 Nbf388fa9a9e3419294209711784b47d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Disease Progression
134 rdf:type schema:DefinedTerm
135 Nc0ba5ee993dc47b98e64ac6fa9151bd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Algorithms
137 rdf:type schema:DefinedTerm
138 Ncec8f816094a4db69abc8bdc8f1f3717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Carotid Arteries
140 rdf:type schema:DefinedTerm
141 Nd232ea3ea8784368b170b816c71639bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Image Interpretation, Computer-Assisted
143 rdf:type schema:DefinedTerm
144 Nd2d376c875c640f296ceab2fb807149b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Predictive Value of Tests
146 rdf:type schema:DefinedTerm
147 Ndadd897fb167452e9e3fcbea8eb862b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Gadolinium DTPA
149 rdf:type schema:DefinedTerm
150 Nea80aeb0829f4166afbae90a964e789e schema:name nlm_unique_id
151 schema:value 100969716
152 rdf:type schema:PropertyValue
153 Necb495517cf5481e9c23760006fc7bc4 rdf:first sg:person.0744610650.37
154 rdf:rest Nf0ba79b3fa154913b4c57d848c03741b
155 Nf0ba79b3fa154913b4c57d848c03741b rdf:first sg:person.0764104440.34
156 rdf:rest N27cf3465a3a24d09a29daa12996b01a0
157 Nf36de6307ec64903b984c9a708ca4380 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Contrast Media
159 rdf:type schema:DefinedTerm
160 Nf7c01ce4742945ceafe93b2b0190c2e1 schema:name pubmed_id
161 schema:value 26169389
162 rdf:type schema:PropertyValue
163 Nfd2d8b5f60e64dfb983447e28dffcc32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Longitudinal Studies
165 rdf:type schema:DefinedTerm
166 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
167 schema:name Information and Computing Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
170 schema:name Artificial Intelligence and Image Processing
171 rdf:type schema:DefinedTerm
172 sg:grant.2535620 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0704-0
173 rdf:type schema:MonetaryGrant
174 sg:grant.2542913 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0704-0
175 rdf:type schema:MonetaryGrant
176 sg:journal.1025429 schema:issn 1569-5794
177 1573-0743
178 schema:name The International Journal of Cardiovascular Imaging
179 rdf:type schema:Periodical
180 sg:person.01061037250.78 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
181 schema:familyName Xu
182 schema:givenName Dongxiang
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061037250.78
184 rdf:type schema:Person
185 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
186 schema:familyName Yuan
187 schema:givenName Chun
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
189 rdf:type schema:Person
190 sg:person.01315764117.02 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
191 schema:familyName Yoneyama
192 schema:givenName Taku
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315764117.02
194 rdf:type schema:Person
195 sg:person.013351427457.97 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
196 schema:familyName Hatsukami
197 schema:givenName Thomas S.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97
199 rdf:type schema:Person
200 sg:person.0640513500.33 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
201 schema:familyName Kerwin
202 schema:givenName William S.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33
204 rdf:type schema:Person
205 sg:person.0665143653.55 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
206 schema:familyName Balu
207 schema:givenName Niranjan
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55
209 rdf:type schema:Person
210 sg:person.0744610650.37 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
211 schema:familyName Sun
212 schema:givenName Jie
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37
214 rdf:type schema:Person
215 sg:person.0764104440.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
216 schema:familyName Hippe
217 schema:givenName Daniel S.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
219 rdf:type schema:Person
220 sg:pub.10.1007/s10334-003-0030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012447112
221 https://doi.org/10.1007/s10334-003-0030-8
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s10554-014-0532-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034813084
224 https://doi.org/10.1007/s10554-014-0532-7
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/jmri.20599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039529318
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/jmri.21360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046344901
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/jmri.21529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011289493
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/jmri.22043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030874778
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/jmri.22886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024783612
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1002/jmri.23918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043833248
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/mrm.20814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037908344
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/mrm.20828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029191131
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.ahj.2007.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019606992
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.amjcard.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022499569
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.ejvs.2004.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051104553
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.jacc.2012.10.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028607376
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.jcmg.2011.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003874461
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s1078-5884(04)00219-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054680961
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1017/cbo9780511802843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098714359
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1097/rmr.0b013e3181598d9d schema:sameAs https://app.dimensions.ai/details/publication/pub.1013328216
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1148/radiol.13121702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007582008
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1148/radiol.2232010659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019829323
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1148/radiol.2342032101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000428417
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1161/01.atv.0000149867.61851.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036106235
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1161/01.atv.0000155965.54679.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023396216
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1161/01.atv.20.5.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034218402
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1161/01.str.0000196985.38701.0c schema:sameAs https://app.dimensions.ai/details/publication/pub.1018716413
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1161/01.str.0000204638.91099.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021071288
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1161/circimaging.108.823922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029937954
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1161/circulationaha.104.528174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038078333
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1161/circulationaha.105.589044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014132344
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1161/strokeaha.106.479139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360046
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1161/strokeaha.109.575670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025545921
283 rdf:type schema:CreativeWork
284 https://doi.org/10.3174/ajnr.a3028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041396776
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
287 schema:name Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA
288 Department of Surgery, Harborview Medical Center, University of Washington, 325 9th Ave, 98104, Seattle, WA, USA
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.410818.4 schema:alternateName Tokyo Women's Medical University
291 schema:name Department of Neurosurgery, Tokyo Women’s Medical University, 8-1, Kawadachou, 1628666, Shinjukuku, Tokyo, Japan
292 Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...