Coronary microcirculation changes in non-ischemic dilated cardiomyopathy identified by novel perfusion CT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-25

AUTHORS

Wayne L. Miller, Thomas R. Behrenbeck, Cynthia H. McCollough, Eric E. Williamson, Shuai Leng, Timothy L. Kline, Erik L. Ritman

ABSTRACT

Intramyocardial microvessels demonstrate functional changes in cardiomyopathies. However, clinical computed tomography (CT) does not have adequate spatial resolution to assess the microvessels. Our hypothesis is that these functional changes manifest as altered heterogeneity of the spatial distribution of arteriolar perfusion territories. Our goal was to determine whether the spatial analysis of perfusion CT could clinically detect changes in the function and structure of the intramyocardial microcirculation in a non-ischemic dilated cardiomyopathy (DCM). Two groups were studied: (1) a Control group (12 male plus 12 female) with no risk factors nor evidence of coronary artery disease, and (2) a DCM group (12 male plus 12 female) with left ventricular ejection fraction ≤40 % and no evidence of coronary artery disease. Using the CT scan, the LV free wall thickness and its radius of curvature were measured. The DCM group was sub divided into those with LV free wall thickness <11.5 mm and those with thickness ≥11.5 mm. In the myocardial opacification phase of the CT scan sequence, myocardial perfusion (F) and intramyocardial blood volume (Bv) for multiple intramyocardial regions were computed. No significant differences between the groups were demonstrable in overall myocardial F or Bv. However, the myocardial regional data showed significantly increased spatial heterogeneity in the DCM group when compared to the Control group. The findings demonstrate that altered function of the subresolution intramyocardial microcirculation can be quantified with myocardial perfusion CT and that significant changes in these parameters occur in the DCM subjects with LV wall thickness greater than 11.5 mm. More... »

PAGES

881-888

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-015-0619-9

DOI

http://dx.doi.org/10.1007/s10554-015-0619-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051741856

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25712168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiomyopathy, Dilated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microcirculation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Wayne L.", 
        "id": "sg:person.01166460626.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166460626.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behrenbeck", 
        "givenName": "Thomas R.", 
        "id": "sg:person.01225631705.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225631705.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCollough", 
        "givenName": "Cynthia H.", 
        "id": "sg:person.010364077757.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364077757.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williamson", 
        "givenName": "Eric E.", 
        "id": "sg:person.0662535551.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662535551.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leng", 
        "givenName": "Shuai", 
        "id": "sg:person.01076131742.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076131742.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kline", 
        "givenName": "Timothy L.", 
        "id": "sg:person.01172470307.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172470307.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritman", 
        "givenName": "Erik L.", 
        "id": "sg:person.015336266544.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015336266544.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11604-006-0113-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041184909", 
          "https://doi.org/10.1007/s11604-006-0113-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03044568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051620961", 
          "https://doi.org/10.1007/bf03044568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-013-0934-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023215413", 
          "https://doi.org/10.1007/s10439-013-0934-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02-25", 
    "datePublishedReg": "2015-02-25", 
    "description": "Intramyocardial microvessels demonstrate functional changes in cardiomyopathies. However, clinical computed tomography (CT) does not have adequate spatial resolution to assess the microvessels. Our hypothesis is that these functional changes manifest as altered heterogeneity of the spatial distribution of arteriolar perfusion territories. Our goal was to determine whether the spatial analysis of perfusion CT could clinically detect changes in the function and structure of the intramyocardial microcirculation in a non-ischemic dilated cardiomyopathy (DCM). Two groups were studied: (1) a Control group (12 male plus 12 female) with no risk factors nor evidence of coronary artery disease, and (2) a DCM group (12 male plus 12 female) with left ventricular ejection fraction \u226440\u00a0% and no evidence of coronary artery disease. Using the CT scan, the LV free wall thickness and its radius of curvature were measured. The DCM group was sub divided into those with LV free wall thickness <11.5\u00a0mm and those with thickness \u226511.5\u00a0mm. In the myocardial opacification phase of the CT scan sequence, myocardial perfusion (F) and intramyocardial blood volume (Bv) for multiple intramyocardial regions were computed. No significant differences between the groups were demonstrable in overall myocardial F or Bv. However, the myocardial regional data showed significantly increased spatial heterogeneity in the DCM group when compared to the Control group. The findings demonstrate that altered function of the subresolution intramyocardial microcirculation can be quantified with myocardial perfusion CT and that significant changes in these parameters occur in the DCM subjects with LV wall thickness greater than 11.5\u00a0mm.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10554-015-0619-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705219", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2539096", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "LV free wall thickness", 
      "coronary artery disease", 
      "free wall thickness", 
      "DCM group", 
      "clinical computed tomography", 
      "artery disease", 
      "control group", 
      "left ventricular ejection fraction", 
      "functional changes", 
      "ventricular ejection fraction", 
      "LV wall thickness", 
      "intramyocardial microcirculation", 
      "DCM subjects", 
      "ejection fraction", 
      "microcirculation changes", 
      "risk factors", 
      "intramyocardial blood volume", 
      "wall thickness", 
      "CT scan", 
      "intramyocardial microvessels", 
      "computed tomography", 
      "perfusion territories", 
      "myocardial perfusion", 
      "blood volume", 
      "altered function", 
      "significant differences", 
      "cardiomyopathy", 
      "microcirculation", 
      "disease", 
      "microvessels", 
      "significant changes", 
      "group", 
      "perfusion", 
      "scan sequence", 
      "evidence", 
      "tomography", 
      "scans", 
      "changes", 
      "subjects", 
      "heterogeneity", 
      "findings", 
      "function", 
      "factors", 
      "differences", 
      "volume", 
      "hypothesis", 
      "BV", 
      "regional data", 
      "data", 
      "fraction", 
      "thickness", 
      "analysis", 
      "goal", 
      "region", 
      "adequate spatial resolution", 
      "territory", 
      "sub", 
      "phase", 
      "spatial analysis", 
      "parameters", 
      "sequence", 
      "resolution", 
      "distribution", 
      "radius of curvature", 
      "spatial resolution", 
      "curvature", 
      "spatial distribution", 
      "spatial heterogeneity", 
      "structure", 
      "radius", 
      "arteriolar perfusion territories", 
      "perfusion CT", 
      "myocardial opacification phase", 
      "opacification phase", 
      "CT scan sequence", 
      "multiple intramyocardial regions", 
      "intramyocardial regions", 
      "myocardial regional data", 
      "subresolution intramyocardial microcirculation", 
      "myocardial perfusion CT", 
      "Coronary microcirculation changes", 
      "novel perfusion CT"
    ], 
    "name": "Coronary microcirculation changes in non-ischemic dilated cardiomyopathy identified by novel perfusion CT", 
    "pagination": "881-888", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051741856"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-015-0619-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25712168"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-015-0619-9", 
      "https://app.dimensions.ai/details/publication/pub.1051741856"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_679.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10554-015-0619-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0619-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0619-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0619-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-015-0619-9'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      22 PREDICATES      123 URIs      112 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-015-0619-9 schema:about N25134f06ab91428bb7db74697762b54e
2 N3bbe90dca771435f82c34475c80653da
3 N6287b814d9264fcdab440cde4297cb7d
4 N977599d6c81c4483a4f3ff17e6e296c6
5 Na96ccf0c3a2e43db87b7b77b7244f756
6 Naf0c2a8faeff45da8b4919cc12c2af64
7 Nb0be58e4844343419be64b1280d93388
8 Ncc4c6dbfb4004ee5b92bd64abab189e0
9 Ncfa72fe00b6c441b86f27546166fa779
10 Ne6d4cb52ec11435d8bca479f13c9c71f
11 Neb88b31e4469415381fb8d04c075048d
12 Neda899c7f9b644e4b171549738ea8e16
13 anzsrc-for:11
14 anzsrc-for:1102
15 schema:author Nbceb3fea3190499da3eb243ce4161ce7
16 schema:citation sg:pub.10.1007/bf03044568
17 sg:pub.10.1007/s10439-013-0934-z
18 sg:pub.10.1007/s11604-006-0113-3
19 schema:datePublished 2015-02-25
20 schema:datePublishedReg 2015-02-25
21 schema:description Intramyocardial microvessels demonstrate functional changes in cardiomyopathies. However, clinical computed tomography (CT) does not have adequate spatial resolution to assess the microvessels. Our hypothesis is that these functional changes manifest as altered heterogeneity of the spatial distribution of arteriolar perfusion territories. Our goal was to determine whether the spatial analysis of perfusion CT could clinically detect changes in the function and structure of the intramyocardial microcirculation in a non-ischemic dilated cardiomyopathy (DCM). Two groups were studied: (1) a Control group (12 male plus 12 female) with no risk factors nor evidence of coronary artery disease, and (2) a DCM group (12 male plus 12 female) with left ventricular ejection fraction ≤40 % and no evidence of coronary artery disease. Using the CT scan, the LV free wall thickness and its radius of curvature were measured. The DCM group was sub divided into those with LV free wall thickness <11.5 mm and those with thickness ≥11.5 mm. In the myocardial opacification phase of the CT scan sequence, myocardial perfusion (F) and intramyocardial blood volume (Bv) for multiple intramyocardial regions were computed. No significant differences between the groups were demonstrable in overall myocardial F or Bv. However, the myocardial regional data showed significantly increased spatial heterogeneity in the DCM group when compared to the Control group. The findings demonstrate that altered function of the subresolution intramyocardial microcirculation can be quantified with myocardial perfusion CT and that significant changes in these parameters occur in the DCM subjects with LV wall thickness greater than 11.5 mm.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N6dfc64db6d12411690f084b05af3f33f
26 N7726c3f261534b2bb9d7a03ef835ced6
27 sg:journal.1025429
28 schema:keywords BV
29 CT scan
30 CT scan sequence
31 Coronary microcirculation changes
32 DCM group
33 DCM subjects
34 LV free wall thickness
35 LV wall thickness
36 adequate spatial resolution
37 altered function
38 analysis
39 arteriolar perfusion territories
40 artery disease
41 blood volume
42 cardiomyopathy
43 changes
44 clinical computed tomography
45 computed tomography
46 control group
47 coronary artery disease
48 curvature
49 data
50 differences
51 disease
52 distribution
53 ejection fraction
54 evidence
55 factors
56 findings
57 fraction
58 free wall thickness
59 function
60 functional changes
61 goal
62 group
63 heterogeneity
64 hypothesis
65 intramyocardial blood volume
66 intramyocardial microcirculation
67 intramyocardial microvessels
68 intramyocardial regions
69 left ventricular ejection fraction
70 microcirculation
71 microcirculation changes
72 microvessels
73 multiple intramyocardial regions
74 myocardial opacification phase
75 myocardial perfusion
76 myocardial perfusion CT
77 myocardial regional data
78 novel perfusion CT
79 opacification phase
80 parameters
81 perfusion
82 perfusion CT
83 perfusion territories
84 phase
85 radius
86 radius of curvature
87 region
88 regional data
89 resolution
90 risk factors
91 scan sequence
92 scans
93 sequence
94 significant changes
95 significant differences
96 spatial analysis
97 spatial distribution
98 spatial heterogeneity
99 spatial resolution
100 structure
101 sub
102 subjects
103 subresolution intramyocardial microcirculation
104 territory
105 thickness
106 tomography
107 ventricular ejection fraction
108 volume
109 wall thickness
110 schema:name Coronary microcirculation changes in non-ischemic dilated cardiomyopathy identified by novel perfusion CT
111 schema:pagination 881-888
112 schema:productId N6280d58d6b4a4b2b82e23b5dba26b99e
113 N9aa7a2346c1d4e41ab5b91e20ba39db7
114 Nbe34d00ce3194a8f8846e4408e77a6b2
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051741856
116 https://doi.org/10.1007/s10554-015-0619-9
117 schema:sdDatePublished 2022-01-01T18:37
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher Nc93a7b45aa4f4c02bb651b684d735483
120 schema:url https://doi.org/10.1007/s10554-015-0619-9
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N1edb829910f943b6991e3231d95f1e94 rdf:first sg:person.015336266544.41
125 rdf:rest rdf:nil
126 N25134f06ab91428bb7db74697762b54e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Cardiomyopathy, Dilated
128 rdf:type schema:DefinedTerm
129 N3bbe90dca771435f82c34475c80653da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 N6280d58d6b4a4b2b82e23b5dba26b99e schema:name doi
133 schema:value 10.1007/s10554-015-0619-9
134 rdf:type schema:PropertyValue
135 N6287b814d9264fcdab440cde4297cb7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Radiation Dosage
137 rdf:type schema:DefinedTerm
138 N6aa49d4cbd6944b5bc5c6521d383f2db rdf:first sg:person.010364077757.63
139 rdf:rest N80a6dc583bb84dcb8fcc99da816765fa
140 N6d2a3bcc30ca4c87b5b61786f97d6ef4 rdf:first sg:person.01172470307.32
141 rdf:rest N1edb829910f943b6991e3231d95f1e94
142 N6dfc64db6d12411690f084b05af3f33f schema:volumeNumber 31
143 rdf:type schema:PublicationVolume
144 N7726c3f261534b2bb9d7a03ef835ced6 schema:issueNumber 4
145 rdf:type schema:PublicationIssue
146 N80a6dc583bb84dcb8fcc99da816765fa rdf:first sg:person.0662535551.45
147 rdf:rest Na19160a43d9f43688306f6d7546d583f
148 N977599d6c81c4483a4f3ff17e6e296c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Coronary Circulation
150 rdf:type schema:DefinedTerm
151 N9aa7a2346c1d4e41ab5b91e20ba39db7 schema:name pubmed_id
152 schema:value 25712168
153 rdf:type schema:PropertyValue
154 Na19160a43d9f43688306f6d7546d583f rdf:first sg:person.01076131742.53
155 rdf:rest N6d2a3bcc30ca4c87b5b61786f97d6ef4
156 Na96ccf0c3a2e43db87b7b77b7244f756 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Case-Control Studies
158 rdf:type schema:DefinedTerm
159 Naf0c2a8faeff45da8b4919cc12c2af64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Myocardial Perfusion Imaging
161 rdf:type schema:DefinedTerm
162 Nb0be58e4844343419be64b1280d93388 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Female
164 rdf:type schema:DefinedTerm
165 Nbceb3fea3190499da3eb243ce4161ce7 rdf:first sg:person.01166460626.19
166 rdf:rest Nee94b09c6fb34ed59cbdd4e4810d4bcc
167 Nbe34d00ce3194a8f8846e4408e77a6b2 schema:name dimensions_id
168 schema:value pub.1051741856
169 rdf:type schema:PropertyValue
170 Nc93a7b45aa4f4c02bb651b684d735483 schema:name Springer Nature - SN SciGraph project
171 rdf:type schema:Organization
172 Ncc4c6dbfb4004ee5b92bd64abab189e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Male
174 rdf:type schema:DefinedTerm
175 Ncfa72fe00b6c441b86f27546166fa779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Microcirculation
177 rdf:type schema:DefinedTerm
178 Ne6d4cb52ec11435d8bca479f13c9c71f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Predictive Value of Tests
180 rdf:type schema:DefinedTerm
181 Neb88b31e4469415381fb8d04c075048d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Tomography, X-Ray Computed
183 rdf:type schema:DefinedTerm
184 Neda899c7f9b644e4b171549738ea8e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Middle Aged
186 rdf:type schema:DefinedTerm
187 Nee94b09c6fb34ed59cbdd4e4810d4bcc rdf:first sg:person.01225631705.19
188 rdf:rest N6aa49d4cbd6944b5bc5c6521d383f2db
189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
190 schema:name Medical and Health Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
193 schema:name Cardiorespiratory Medicine and Haematology
194 rdf:type schema:DefinedTerm
195 sg:grant.2539096 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0619-9
196 rdf:type schema:MonetaryGrant
197 sg:grant.2705219 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-015-0619-9
198 rdf:type schema:MonetaryGrant
199 sg:journal.1025429 schema:issn 1569-5794
200 1573-0743
201 schema:name The International Journal of Cardiovascular Imaging
202 schema:publisher Springer Nature
203 rdf:type schema:Periodical
204 sg:person.010364077757.63 schema:affiliation grid-institutes:grid.66875.3a
205 schema:familyName McCollough
206 schema:givenName Cynthia H.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364077757.63
208 rdf:type schema:Person
209 sg:person.01076131742.53 schema:affiliation grid-institutes:grid.66875.3a
210 schema:familyName Leng
211 schema:givenName Shuai
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076131742.53
213 rdf:type schema:Person
214 sg:person.01166460626.19 schema:affiliation grid-institutes:grid.66875.3a
215 schema:familyName Miller
216 schema:givenName Wayne L.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166460626.19
218 rdf:type schema:Person
219 sg:person.01172470307.32 schema:affiliation grid-institutes:grid.66875.3a
220 schema:familyName Kline
221 schema:givenName Timothy L.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172470307.32
223 rdf:type schema:Person
224 sg:person.01225631705.19 schema:affiliation grid-institutes:grid.66875.3a
225 schema:familyName Behrenbeck
226 schema:givenName Thomas R.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225631705.19
228 rdf:type schema:Person
229 sg:person.015336266544.41 schema:affiliation grid-institutes:grid.66875.3a
230 schema:familyName Ritman
231 schema:givenName Erik L.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015336266544.41
233 rdf:type schema:Person
234 sg:person.0662535551.45 schema:affiliation grid-institutes:grid.66875.3a
235 schema:familyName Williamson
236 schema:givenName Eric E.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662535551.45
238 rdf:type schema:Person
239 sg:pub.10.1007/bf03044568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051620961
240 https://doi.org/10.1007/bf03044568
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/s10439-013-0934-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023215413
243 https://doi.org/10.1007/s10439-013-0934-z
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/s11604-006-0113-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041184909
246 https://doi.org/10.1007/s11604-006-0113-3
247 rdf:type schema:CreativeWork
248 grid-institutes:grid.66875.3a schema:alternateName Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, 55905, Rochester, MN, USA
249 Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
250 Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA
251 schema:name Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, 55905, Rochester, MN, USA
252 Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
253 Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...