Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-01

AUTHORS

Jie Sun, Xue-Qiao Zhao, Niranjan Balu, Daniel S. Hippe, Thomas S. Hatsukami, Daniel A. Isquith, Kiyofumi Yamada, Moni B. Neradilek, Gádor Cantón, Yunjing Xue, Jerome L. Fleg, Patrice Desvigne-Nickens, Michael T. Klimas, Robert J. Padley, Maria T. Vassileva, Bradley T. Wyman, Chun Yuan

ABSTRACT

This study sought to determine the multicenter reproducibility of magnetic resonance imaging (MRI) and the compatibility of different scanner platforms in assessing carotid plaque morphology and composition. A standardized multi-contrast MRI protocol was implemented at 16 imaging sites (GE: 8; Philips: 8). Sixty-eight subjects (61 ± 8 years; 52 males) were dispersedly recruited and scanned twice within 2 weeks on the same magnet. Images were reviewed centrally using a streamlined semiautomatic approach. Quantitative volumetric measurements on plaque morphology (lumen, wall, and outer wall) and plaque tissue composition [lipid-rich necrotic core (LRNC), calcification, and fibrous tissue] were obtained. Inter-scan reproducibility was summarized using the within-subject standard deviation, coefficient of variation (CV) and intraclass correlation coefficient (ICC). Good to excellent reproducibility was observed for both morphological (ICC range 0.98-0.99) and compositional (ICC range 0.88-0.96) measurements. Measurement precision was related to the size of structures (CV range 2.5-4.9 % for morphology, 36-44 % for LRNC and calcification). Comparable measurement variability was found between the two platforms on both plaque morphology and tissue composition. In conclusion, good to excellent inter-scan reproducibility of carotid MRI can be achieved in multicenter settings with comparable measurement precision between platforms, which may facilitate future multicenter endeavors that use serial MRI to monitor atherosclerotic plaque progression. More... »

PAGES

95-103

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-014-0532-7

DOI

http://dx.doi.org/10.1007/s10554-014-0532-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034813084

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25216871


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Canada", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Calcification", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St Brotman 127, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jie", 
        "id": "sg:person.0744610650.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xue-Qiao", 
        "id": "sg:person.016153744457.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153744457.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St Brotman 127, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balu", 
        "givenName": "Niranjan", 
        "id": "sg:person.0665143653.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St Brotman 127, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S.", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Surgery, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatsukami", 
        "givenName": "Thomas S.", 
        "id": "sg:person.013351427457.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isquith", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0576732420.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576732420.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St Brotman 127, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Kiyofumi", 
        "id": "sg:person.01220701324.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220701324.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mountain-Whisper-Light Statistics, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neradilek", 
        "givenName": "Moni B.", 
        "id": "sg:person.01236221173.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236221173.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Mechanical Engineering, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cant\u00f3n", 
        "givenName": "G\u00e1dor", 
        "id": "sg:person.01245523223.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245523223.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St Brotman 127, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Yunjing", 
        "id": "sg:person.0643667345.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643667345.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Heart Lung and Blood Institute", 
          "id": "https://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleg", 
        "givenName": "Jerome L.", 
        "id": "sg:person.01300555057.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300555057.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Heart Lung and Blood Institute", 
          "id": "https://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desvigne-Nickens", 
        "givenName": "Patrice", 
        "id": "sg:person.01015776147.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015776147.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MSD (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417993.1", 
          "name": [
            "Merck, Whitehouse Station, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klimas", 
        "givenName": "Michael T.", 
        "id": "sg:person.0635127247.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635127247.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AbbVie (United States)", 
          "id": "https://www.grid.ac/institutes/grid.431072.3", 
          "name": [
            "Abbvie, North Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padley", 
        "givenName": "Robert J.", 
        "id": "sg:person.0776616306.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776616306.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Foundation for the National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.428807.1", 
          "name": [
            "Foundation for the National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassileva", 
        "givenName": "Maria T.", 
        "id": "sg:person.01001401110.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001401110.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pfizer (United States)", 
          "id": "https://www.grid.ac/institutes/grid.410513.2", 
          "name": [
            "Pfizer, New London, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wyman", 
        "givenName": "Bradley T.", 
        "id": "sg:person.014042143607.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042143607.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St Brotman 127, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.21890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000148663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000148663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003874461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006847172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13121702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007582008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011289493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012025143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012171530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.108.788059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012200844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.108.788059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012200844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000145170.22652.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016957697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2007.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019606992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2523081798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021154718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024783612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)61383-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026907085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.001534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028594721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.001534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028594721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-004-1247-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030526062", 
          "https://doi.org/10.1007/s00234-004-1247-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-004-1247-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030526062", 
          "https://doi.org/10.1007/s00234-004-1247-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030874778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030874778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.11.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034462926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2010.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036682764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.528174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038078333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039529318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.104.3.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041984558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046344901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9468-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048247287", 
          "https://doi.org/10.1007/s10554-009-9468-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9468-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048247287", 
          "https://doi.org/10.1007/s10554-009-9468-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9468-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048247287", 
          "https://doi.org/10.1007/s10554-009-9468-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051950912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053641341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10976640500287703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058381088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/23/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109704884", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01", 
    "datePublishedReg": "2015-01-01", 
    "description": "This study sought to determine the multicenter reproducibility of magnetic resonance imaging (MRI) and the compatibility of different scanner platforms in assessing carotid plaque morphology and composition. A standardized multi-contrast MRI protocol was implemented at 16 imaging sites (GE: 8; Philips: 8). Sixty-eight subjects (61\u00a0\u00b1\u00a08\u00a0years; 52 males) were dispersedly recruited and scanned twice within 2\u00a0weeks on the same magnet. Images were reviewed centrally using a streamlined semiautomatic approach. Quantitative volumetric measurements on plaque morphology (lumen, wall, and outer wall) and plaque tissue composition [lipid-rich necrotic core (LRNC), calcification, and fibrous tissue] were obtained. Inter-scan reproducibility was summarized using the within-subject standard deviation, coefficient of variation (CV) and intraclass correlation coefficient (ICC). Good to excellent reproducibility was observed for both morphological (ICC range 0.98-0.99) and compositional (ICC range 0.88-0.96) measurements. Measurement precision was related to the size of structures (CV range 2.5-4.9\u00a0% for morphology, 36-44\u00a0% for LRNC and calcification). Comparable measurement variability was found between the two platforms on both plaque morphology and tissue composition. In conclusion, good to excellent inter-scan reproducibility of carotid MRI can be achieved in multicenter settings with comparable measurement precision between platforms, which may facilitate future multicenter endeavors that use serial MRI to monitor atherosclerotic plaque progression. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-014-0532-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2541482", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study", 
    "pagination": "95-103", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5d618ad6bf72ac1c3dbc73f78547b5e123b27162935a34562033e0baf312038"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25216871"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-014-0532-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034813084"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-014-0532-7", 
      "https://app.dimensions.ai/details/publication/pub.1034813084"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000590.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10554-014-0532-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0532-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0532-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0532-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0532-7'


 

This table displays all metadata directly associated to this object as RDF triples.

411 TRIPLES      21 PREDICATES      89 URIs      47 LITERALS      35 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-014-0532-7 schema:about N0593323aec3c4e94866f4afd2c8acea2
2 N12ce3e4c1b4f46b6a3e57e4f73f164bf
3 N232d4e1c750d46e593f1dae6b4639fe9
4 N26b284ea29594023bf71c5646c88eb7d
5 N27800ad2e395490984fa9b1ede9f2b1d
6 N3682247e9bed4e5ead1f74237094a80f
7 N368ff80e36ba4f0fb3cd962e3fdbf6b4
8 N51294584056a401ca7c38a75530ecc92
9 N57ed400c66c9487cb7a95c21a5220f76
10 N5f8f79eee9144df38b66555fdc0594eb
11 N7ce2bb217b114784b437ae6331cb0486
12 N83fe1b2040ea45f49ce8527ad5e8ae2f
13 N9524b44dd18c46f8b51ce060eadbc1fc
14 N95af17a5ff6d4349b43959aba53b3f3b
15 N96567b3d5ec74656bfcbe2c96db8a7ff
16 N96e75ac9fcd447b59ceca9b810ca11a4
17 Naccb080979514eb5b850642873092dde
18 Nad86096be2df4cfc83db991d58e2df81
19 Nb581893db3de4bb3b3c998c161c1dbec
20 Ncc725165df8a4acf83d423893285d4fb
21 Ncf8f9dc137c64bd29d731df188b6693f
22 Nd0363f3c55cb441297bdca0090718d8c
23 Nd4c46f56f0c247ad98031d405474f99f
24 Nd738136d5bbc488e9d8cb0531e6c6f36
25 Ndde1c1caed5c4bae915870face837236
26 Ndece7285f0d84bbd856f2aebd0f12692
27 anzsrc-for:02
28 anzsrc-for:0299
29 schema:author Ndba61758337440799677b5ef8e676704
30 schema:citation sg:pub.10.1007/978-1-4419-0318-1
31 sg:pub.10.1007/s00234-004-1247-6
32 sg:pub.10.1007/s10554-009-9468-8
33 https://app.dimensions.ai/details/publication/pub.1109704884
34 https://doi.org/10.1002/hbm.20511
35 https://doi.org/10.1002/jmri.20583
36 https://doi.org/10.1002/jmri.20599
37 https://doi.org/10.1002/jmri.20904
38 https://doi.org/10.1002/jmri.21004
39 https://doi.org/10.1002/jmri.21360
40 https://doi.org/10.1002/jmri.21529
41 https://doi.org/10.1002/jmri.21890
42 https://doi.org/10.1002/jmri.22014
43 https://doi.org/10.1002/jmri.22043
44 https://doi.org/10.1002/jmri.22886
45 https://doi.org/10.1002/mrm.20814
46 https://doi.org/10.1016/j.ahj.2007.11.018
47 https://doi.org/10.1016/j.ahj.2010.11.017
48 https://doi.org/10.1016/j.atherosclerosis.2007.09.001
49 https://doi.org/10.1016/j.jacc.2004.11.039
50 https://doi.org/10.1016/j.jcmg.2011.06.013
51 https://doi.org/10.1016/s0140-6736(11)61383-4
52 https://doi.org/10.1080/10976640500287703
53 https://doi.org/10.1088/0031-9155/53/23/011
54 https://doi.org/10.1097/rmr.0b013e3181598d9d
55 https://doi.org/10.1148/radiol.13121702
56 https://doi.org/10.1148/radiol.2523081798
57 https://doi.org/10.1161/01.cir.0000145170.22652.51
58 https://doi.org/10.1161/01.cir.104.3.249
59 https://doi.org/10.1161/circimaging.108.788059
60 https://doi.org/10.1161/circulationaha.104.528174
61 https://doi.org/10.1161/circulationaha.113.001534
62 https://doi.org/10.1161/strokeaha.106.479139
63 https://doi.org/10.1177/001316446002000104
64 schema:datePublished 2015-01
65 schema:datePublishedReg 2015-01-01
66 schema:description This study sought to determine the multicenter reproducibility of magnetic resonance imaging (MRI) and the compatibility of different scanner platforms in assessing carotid plaque morphology and composition. A standardized multi-contrast MRI protocol was implemented at 16 imaging sites (GE: 8; Philips: 8). Sixty-eight subjects (61 ± 8 years; 52 males) were dispersedly recruited and scanned twice within 2 weeks on the same magnet. Images were reviewed centrally using a streamlined semiautomatic approach. Quantitative volumetric measurements on plaque morphology (lumen, wall, and outer wall) and plaque tissue composition [lipid-rich necrotic core (LRNC), calcification, and fibrous tissue] were obtained. Inter-scan reproducibility was summarized using the within-subject standard deviation, coefficient of variation (CV) and intraclass correlation coefficient (ICC). Good to excellent reproducibility was observed for both morphological (ICC range 0.98-0.99) and compositional (ICC range 0.88-0.96) measurements. Measurement precision was related to the size of structures (CV range 2.5-4.9 % for morphology, 36-44 % for LRNC and calcification). Comparable measurement variability was found between the two platforms on both plaque morphology and tissue composition. In conclusion, good to excellent inter-scan reproducibility of carotid MRI can be achieved in multicenter settings with comparable measurement precision between platforms, which may facilitate future multicenter endeavors that use serial MRI to monitor atherosclerotic plaque progression.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree true
70 schema:isPartOf N72367c1f656d4351aa3f11df9ff00ccf
71 Nf344408bee9945c5919f56a7237edfe9
72 sg:journal.1025429
73 schema:name Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study
74 schema:pagination 95-103
75 schema:productId N74330c8118474d8a8e64221f14b42a0d
76 N9a1ffd70ed90460e8008dae53b1e5fd3
77 Nc05df4d7937b4e53a7f0e5ed7e91947f
78 Nca5ccab443d6400c833ca459fdd722c5
79 Ne5c8bee7454645e9b1034fc505e80f5b
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034813084
81 https://doi.org/10.1007/s10554-014-0532-7
82 schema:sdDatePublished 2019-04-10T20:09
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N89fda490f4754cd28dea57cfabd28198
85 schema:url http://link.springer.com/10.1007/s10554-014-0532-7
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0593323aec3c4e94866f4afd2c8acea2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Vascular Calcification
91 rdf:type schema:DefinedTerm
92 N12ce3e4c1b4f46b6a3e57e4f73f164bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Aged
94 rdf:type schema:DefinedTerm
95 N1f3a4ec6ec7043c7af08ca125e4dadb0 rdf:first sg:person.013351427457.97
96 rdf:rest Nb6650a30a75344ed9bd0daa96a7d5528
97 N1f83ac211017406da66f743b80c3d6b2 rdf:first sg:person.0776616306.33
98 rdf:rest N9a616285a8534ff4941461d4821f1ce7
99 N232d4e1c750d46e593f1dae6b4639fe9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Time Factors
101 rdf:type schema:DefinedTerm
102 N26b284ea29594023bf71c5646c88eb7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Disease Progression
104 rdf:type schema:DefinedTerm
105 N27800ad2e395490984fa9b1ede9f2b1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Reproducibility of Results
107 rdf:type schema:DefinedTerm
108 N3682247e9bed4e5ead1f74237094a80f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Lipids
110 rdf:type schema:DefinedTerm
111 N368ff80e36ba4f0fb3cd962e3fdbf6b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Middle Aged
113 rdf:type schema:DefinedTerm
114 N51294584056a401ca7c38a75530ecc92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Observer Variation
116 rdf:type schema:DefinedTerm
117 N57ed400c66c9487cb7a95c21a5220f76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Female
119 rdf:type schema:DefinedTerm
120 N5f8f79eee9144df38b66555fdc0594eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Prospective Studies
122 rdf:type schema:DefinedTerm
123 N6719c07a4a0b471c8bf1aa98367585ba rdf:first sg:person.0635127247.06
124 rdf:rest N1f83ac211017406da66f743b80c3d6b2
125 N72367c1f656d4351aa3f11df9ff00ccf schema:issueNumber 1
126 rdf:type schema:PublicationIssue
127 N72ce26a2645649ffb7775b1cde10a3e6 rdf:first sg:person.01015776147.44
128 rdf:rest N6719c07a4a0b471c8bf1aa98367585ba
129 N74330c8118474d8a8e64221f14b42a0d schema:name readcube_id
130 schema:value a5d618ad6bf72ac1c3dbc73f78547b5e123b27162935a34562033e0baf312038
131 rdf:type schema:PropertyValue
132 N7ce2bb217b114784b437ae6331cb0486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name United States
134 rdf:type schema:DefinedTerm
135 N7e748fa94f96461aaf605d7ed2b1cbc1 rdf:first sg:person.016153744457.55
136 rdf:rest Nf4e88c81944c4cc988a53f2a91420902
137 N83fe1b2040ea45f49ce8527ad5e8ae2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Equipment Design
139 rdf:type schema:DefinedTerm
140 N89fda490f4754cd28dea57cfabd28198 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 N9524b44dd18c46f8b51ce060eadbc1fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Necrosis
144 rdf:type schema:DefinedTerm
145 N95af17a5ff6d4349b43959aba53b3f3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Image Interpretation, Computer-Assisted
147 rdf:type schema:DefinedTerm
148 N96567b3d5ec74656bfcbe2c96db8a7ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name China
150 rdf:type schema:DefinedTerm
151 N96e75ac9fcd447b59ceca9b810ca11a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Male
153 rdf:type schema:DefinedTerm
154 N9a1ffd70ed90460e8008dae53b1e5fd3 schema:name dimensions_id
155 schema:value pub.1034813084
156 rdf:type schema:PropertyValue
157 N9a616285a8534ff4941461d4821f1ce7 rdf:first sg:person.01001401110.42
158 rdf:rest Nbdebbac6578d4aa5ae5982022781d637
159 Na645c216787a499a92ecebd5ffc66294 rdf:first sg:person.01236221173.83
160 rdf:rest Nbffa80813e904b819334f30cc449da9c
161 Naccb080979514eb5b850642873092dde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Predictive Value of Tests
163 rdf:type schema:DefinedTerm
164 Nad86096be2df4cfc83db991d58e2df81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Aged, 80 and over
166 rdf:type schema:DefinedTerm
167 Nb581893db3de4bb3b3c998c161c1dbec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Canada
169 rdf:type schema:DefinedTerm
170 Nb6650a30a75344ed9bd0daa96a7d5528 rdf:first sg:person.0576732420.45
171 rdf:rest Nbfaeeab60b2c4d61bf634078e3c74eba
172 Nbdebbac6578d4aa5ae5982022781d637 rdf:first sg:person.014042143607.66
173 rdf:rest Nefff7f2c830c4012b1e9636ffdd2ed58
174 Nbfaeeab60b2c4d61bf634078e3c74eba rdf:first sg:person.01220701324.46
175 rdf:rest Na645c216787a499a92ecebd5ffc66294
176 Nbffa80813e904b819334f30cc449da9c rdf:first sg:person.01245523223.13
177 rdf:rest Nc706c4cf49364700b28774313040417e
178 Nc05df4d7937b4e53a7f0e5ed7e91947f schema:name pubmed_id
179 schema:value 25216871
180 rdf:type schema:PropertyValue
181 Nc706c4cf49364700b28774313040417e rdf:first sg:person.0643667345.93
182 rdf:rest Ne458c2ebb64041f9989bae04ab61f07b
183 Nca5ccab443d6400c833ca459fdd722c5 schema:name nlm_unique_id
184 schema:value 100969716
185 rdf:type schema:PropertyValue
186 Ncc725165df8a4acf83d423893285d4fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Carotid Arteries
188 rdf:type schema:DefinedTerm
189 Ncdad41ebb4a4489f9e14b3dcfae5586a rdf:first sg:person.0764104440.34
190 rdf:rest N1f3a4ec6ec7043c7af08ca125e4dadb0
191 Ncf8f9dc137c64bd29d731df188b6693f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Fibrosis
193 rdf:type schema:DefinedTerm
194 Nd0363f3c55cb441297bdca0090718d8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Magnetic Resonance Angiography
196 rdf:type schema:DefinedTerm
197 Nd25730120b71435a900c6a6a9d7028ba schema:name Mountain-Whisper-Light Statistics, Seattle, WA, USA
198 rdf:type schema:Organization
199 Nd4c46f56f0c247ad98031d405474f99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Feasibility Studies
201 rdf:type schema:DefinedTerm
202 Nd738136d5bbc488e9d8cb0531e6c6f36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Carotid Artery Diseases
204 rdf:type schema:DefinedTerm
205 Ndba61758337440799677b5ef8e676704 rdf:first sg:person.0744610650.37
206 rdf:rest N7e748fa94f96461aaf605d7ed2b1cbc1
207 Ndde1c1caed5c4bae915870face837236 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Plaque, Atherosclerotic
209 rdf:type schema:DefinedTerm
210 Ndece7285f0d84bbd856f2aebd0f12692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Humans
212 rdf:type schema:DefinedTerm
213 Ne458c2ebb64041f9989bae04ab61f07b rdf:first sg:person.01300555057.63
214 rdf:rest N72ce26a2645649ffb7775b1cde10a3e6
215 Ne5c8bee7454645e9b1034fc505e80f5b schema:name doi
216 schema:value 10.1007/s10554-014-0532-7
217 rdf:type schema:PropertyValue
218 Nefff7f2c830c4012b1e9636ffdd2ed58 rdf:first sg:person.011712252247.13
219 rdf:rest rdf:nil
220 Nf344408bee9945c5919f56a7237edfe9 schema:volumeNumber 31
221 rdf:type schema:PublicationVolume
222 Nf4e88c81944c4cc988a53f2a91420902 rdf:first sg:person.0665143653.55
223 rdf:rest Ncdad41ebb4a4489f9e14b3dcfae5586a
224 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
225 schema:name Physical Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
228 schema:name Other Physical Sciences
229 rdf:type schema:DefinedTerm
230 sg:grant.2541482 http://pending.schema.org/fundedItem sg:pub.10.1007/s10554-014-0532-7
231 rdf:type schema:MonetaryGrant
232 sg:journal.1025429 schema:issn 1569-5794
233 1573-0743
234 schema:name The International Journal of Cardiovascular Imaging
235 rdf:type schema:Periodical
236 sg:person.01001401110.42 schema:affiliation https://www.grid.ac/institutes/grid.428807.1
237 schema:familyName Vassileva
238 schema:givenName Maria T.
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001401110.42
240 rdf:type schema:Person
241 sg:person.01015776147.44 schema:affiliation https://www.grid.ac/institutes/grid.279885.9
242 schema:familyName Desvigne-Nickens
243 schema:givenName Patrice
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015776147.44
245 rdf:type schema:Person
246 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
247 schema:familyName Yuan
248 schema:givenName Chun
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
250 rdf:type schema:Person
251 sg:person.01220701324.46 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
252 schema:familyName Yamada
253 schema:givenName Kiyofumi
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220701324.46
255 rdf:type schema:Person
256 sg:person.01236221173.83 schema:affiliation Nd25730120b71435a900c6a6a9d7028ba
257 schema:familyName Neradilek
258 schema:givenName Moni B.
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236221173.83
260 rdf:type schema:Person
261 sg:person.01245523223.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
262 schema:familyName Cantón
263 schema:givenName Gádor
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245523223.13
265 rdf:type schema:Person
266 sg:person.01300555057.63 schema:affiliation https://www.grid.ac/institutes/grid.279885.9
267 schema:familyName Fleg
268 schema:givenName Jerome L.
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300555057.63
270 rdf:type schema:Person
271 sg:person.013351427457.97 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
272 schema:familyName Hatsukami
273 schema:givenName Thomas S.
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97
275 rdf:type schema:Person
276 sg:person.014042143607.66 schema:affiliation https://www.grid.ac/institutes/grid.410513.2
277 schema:familyName Wyman
278 schema:givenName Bradley T.
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042143607.66
280 rdf:type schema:Person
281 sg:person.016153744457.55 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
282 schema:familyName Zhao
283 schema:givenName Xue-Qiao
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153744457.55
285 rdf:type schema:Person
286 sg:person.0576732420.45 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
287 schema:familyName Isquith
288 schema:givenName Daniel A.
289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576732420.45
290 rdf:type schema:Person
291 sg:person.0635127247.06 schema:affiliation https://www.grid.ac/institutes/grid.417993.1
292 schema:familyName Klimas
293 schema:givenName Michael T.
294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635127247.06
295 rdf:type schema:Person
296 sg:person.0643667345.93 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
297 schema:familyName Xue
298 schema:givenName Yunjing
299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643667345.93
300 rdf:type schema:Person
301 sg:person.0665143653.55 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
302 schema:familyName Balu
303 schema:givenName Niranjan
304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55
305 rdf:type schema:Person
306 sg:person.0744610650.37 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
307 schema:familyName Sun
308 schema:givenName Jie
309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37
310 rdf:type schema:Person
311 sg:person.0764104440.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
312 schema:familyName Hippe
313 schema:givenName Daniel S.
314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
315 rdf:type schema:Person
316 sg:person.0776616306.33 schema:affiliation https://www.grid.ac/institutes/grid.431072.3
317 schema:familyName Padley
318 schema:givenName Robert J.
319 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776616306.33
320 rdf:type schema:Person
321 sg:pub.10.1007/978-1-4419-0318-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109704884
322 https://doi.org/10.1007/978-1-4419-0318-1
323 rdf:type schema:CreativeWork
324 sg:pub.10.1007/s00234-004-1247-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030526062
325 https://doi.org/10.1007/s00234-004-1247-6
326 rdf:type schema:CreativeWork
327 sg:pub.10.1007/s10554-009-9468-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048247287
328 https://doi.org/10.1007/s10554-009-9468-8
329 rdf:type schema:CreativeWork
330 https://app.dimensions.ai/details/publication/pub.1109704884 schema:CreativeWork
331 https://doi.org/10.1002/hbm.20511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012171530
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1002/jmri.20583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053641341
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1002/jmri.20599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039529318
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1002/jmri.20904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021154718
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1002/jmri.21004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051950912
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1002/jmri.21360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046344901
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1002/jmri.21529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011289493
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1002/jmri.21890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000148663
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1002/jmri.22014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012025143
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1002/jmri.22043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030874778
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1002/jmri.22886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024783612
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1002/mrm.20814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037908344
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1016/j.ahj.2007.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019606992
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1016/j.ahj.2010.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036682764
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1016/j.atherosclerosis.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006847172
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1016/j.jacc.2004.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034462926
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1016/j.jcmg.2011.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003874461
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1016/s0140-6736(11)61383-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026907085
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1080/10976640500287703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058381088
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1088/0031-9155/53/23/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027415
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1097/rmr.0b013e3181598d9d schema:sameAs https://app.dimensions.ai/details/publication/pub.1013328216
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1148/radiol.13121702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007582008
374 rdf:type schema:CreativeWork
375 https://doi.org/10.1148/radiol.2523081798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020727787
376 rdf:type schema:CreativeWork
377 https://doi.org/10.1161/01.cir.0000145170.22652.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016957697
378 rdf:type schema:CreativeWork
379 https://doi.org/10.1161/01.cir.104.3.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041984558
380 rdf:type schema:CreativeWork
381 https://doi.org/10.1161/circimaging.108.788059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012200844
382 rdf:type schema:CreativeWork
383 https://doi.org/10.1161/circulationaha.104.528174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038078333
384 rdf:type schema:CreativeWork
385 https://doi.org/10.1161/circulationaha.113.001534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028594721
386 rdf:type schema:CreativeWork
387 https://doi.org/10.1161/strokeaha.106.479139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360046
388 rdf:type schema:CreativeWork
389 https://doi.org/10.1177/001316446002000104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039619716
390 rdf:type schema:CreativeWork
391 https://www.grid.ac/institutes/grid.279885.9 schema:alternateName National Heart Lung and Blood Institute
392 schema:name National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
393 rdf:type schema:Organization
394 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
395 schema:name Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
396 Department of Radiology, University of Washington, 850 Republican St Brotman 127, 98109, Seattle, WA, USA
397 Department of Surgery, University of Washington, Seattle, WA, USA
398 Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
399 rdf:type schema:Organization
400 https://www.grid.ac/institutes/grid.410513.2 schema:alternateName Pfizer (United States)
401 schema:name Pfizer, New London, CT, USA
402 rdf:type schema:Organization
403 https://www.grid.ac/institutes/grid.417993.1 schema:alternateName MSD (United States)
404 schema:name Merck, Whitehouse Station, NJ, USA
405 rdf:type schema:Organization
406 https://www.grid.ac/institutes/grid.428807.1 schema:alternateName Foundation for the National Institutes of Health
407 schema:name Foundation for the National Institutes of Health, Bethesda, MD, USA
408 rdf:type schema:Organization
409 https://www.grid.ac/institutes/grid.431072.3 schema:alternateName AbbVie (United States)
410 schema:name Abbvie, North Chicago, IL, USA
411 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...