Dual-energy CT for differentiating acute and chronic pulmonary thromboembolism: an initial experience View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08-06

AUTHORS

Seung-seob Kim, Jin Hur, Young Jin Kim, Hye-Jeong Lee, Yoo Jin Hong, Byoung Wook Choi

ABSTRACT

The purpose of this study was to prospectively evaluate the diagnostic capability of single-phase dual-energy CT (DECT) angiography to differentiate acute and chronic pulmonary thromboembolism (APTE, CPTE). We prospectively enrolled 26 patients (M:F = 9:17; mean age, 61 years old) with a filling defect in the pulmonary artery on DECT angiography. They were divided into two groups—APTE and CPTE—based on the clinical criteria. Two investigators quantitatively measured the following parameters at the embolism and main pulmonary artery: CT attenuation density [Hounsfield unit (HU) values], iodine-related HU value (IHU), and iodine concentration (IC, mg/ml). These parameters of the embolism and their ratio divided by those of the main pulmonary artery were compared between APTE and CPTE groups. Among 26 patients, 15 were categorized into the APTE group and 11 into the CPTE group. The mean HU, IHU, and IC values of emboli were significantly different between the APTE and CPTE groups (32.2 ± 17.0 vs. 52.1 ± 13.6 HU; P = 0.016, 7.2 ± 2.8 vs. 27.3 ± 12.7 HU; P < 0.001, and 0.57 ± 0.23 vs. 1.56 ± 0.67; P < 0.001). The mean HU, IHU, and IC ratios between emboli and main pulmonary arteries were also significantly different between the two groups (0.085 ± 0.046 vs. 0.156 ± 0.064 HU; P = 0.003, 0.023 ± 0.013 vs. 0.099 ± 0.053; P < 0.001, and 0.048 ± 0.035 vs. 0.130 ± 0.064; P = 0.001). DECT angiography using a quantitative analytic methodology can be used to differentiate between APTE and CPTE. More... »

PAGES

113-120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-014-0508-7

DOI

http://dx.doi.org/10.1007/s10554-014-0508-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001811622

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25096053


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acute Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chronic Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iopamidol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multidetector Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Embolism", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seung-seob", 
        "id": "sg:person.01360103260.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360103260.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hur", 
        "givenName": "Jin", 
        "id": "sg:person.0631275763.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Jin", 
        "id": "sg:person.01143557676.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hye-Jeong", 
        "id": "sg:person.01160231265.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Yoo Jin", 
        "id": "sg:person.01014245442.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byoung Wook", 
        "id": "sg:person.01101305576.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-006-0517-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018874898", 
          "https://doi.org/10.1007/s00330-006-0517-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08-06", 
    "datePublishedReg": "2014-08-06", 
    "description": "The purpose of this study was to prospectively evaluate the diagnostic capability of single-phase dual-energy CT (DECT) angiography to differentiate acute and chronic pulmonary thromboembolism (APTE, CPTE). We prospectively enrolled 26 patients (M:F\u00a0=\u00a09:17; mean age, 61\u00a0years old) with a filling defect in the pulmonary artery on DECT angiography. They were divided into two groups\u2014APTE and CPTE\u2014based on the clinical criteria. Two investigators quantitatively measured the following parameters at the embolism and main pulmonary artery: CT attenuation density [Hounsfield unit (HU) values], iodine-related HU value (IHU), and iodine concentration (IC, mg/ml). These parameters of the embolism and their ratio divided by those of the main pulmonary artery were compared between APTE and CPTE groups. Among 26 patients, 15 were categorized into the APTE group and 11 into the CPTE group. The mean HU, IHU, and IC values of emboli were significantly different between the APTE and CPTE groups (32.2\u00a0\u00b1\u00a017.0 vs. 52.1\u00a0\u00b1\u00a013.6\u00a0HU; P\u00a0=\u00a00.016, 7.2\u00a0\u00b1\u00a02.8 vs. 27.3\u00a0\u00b1\u00a012.7\u00a0HU; P\u00a0<\u00a00.001, and 0.57\u00a0\u00b1\u00a00.23 vs. 1.56\u00a0\u00b1\u00a00.67; P\u00a0<\u00a00.001). The mean HU, IHU, and IC ratios between emboli and main pulmonary arteries were also significantly different between the two groups (0.085\u00a0\u00b1\u00a00.046 vs. 0.156\u00a0\u00b1\u00a00.064\u00a0HU; P\u00a0=\u00a00.003, 0.023\u00a0\u00b1\u00a00.013 vs. 0.099\u00a0\u00b1\u00a00.053; P\u00a0<\u00a00.001, and 0.048\u00a0\u00b1\u00a00.035 vs. 0.130\u00a0\u00b1\u00a00.064; P\u00a0=\u00a00.001). DECT angiography using a quantitative analytic methodology can be used to differentiate between APTE and CPTE.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10554-014-0508-7", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "main pulmonary artery", 
      "chronic pulmonary thromboembolism", 
      "pulmonary artery", 
      "pulmonary thromboembolism", 
      "dual-energy CT", 
      "DECT angiography", 
      "CT attenuation density", 
      "quantitative analytic methodology", 
      "mean HU", 
      "single-phase dual-energy CT", 
      "filling defect", 
      "clinical criteria", 
      "initial experience", 
      "artery", 
      "attenuation density", 
      "thromboembolism", 
      "embolism", 
      "iodine concentration", 
      "emboli", 
      "patients", 
      "angiography", 
      "HU values", 
      "CT", 
      "diagnostic capabilities", 
      "group", 
      "IC ratio", 
      "HU", 
      "investigators", 
      "IC values", 
      "criteria", 
      "study", 
      "ratio", 
      "defects", 
      "experience", 
      "concentration", 
      "purpose", 
      "values", 
      "analytic methodology", 
      "parameters", 
      "density", 
      "CPTES", 
      "methodology", 
      "capability", 
      "APTES"
    ], 
    "name": "Dual-energy CT for differentiating acute and chronic pulmonary thromboembolism: an initial experience", 
    "pagination": "113-120", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001811622"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-014-0508-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25096053"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-014-0508-7", 
      "https://app.dimensions.ai/details/publication/pub.1001811622"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_636.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10554-014-0508-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0508-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0508-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0508-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-014-0508-7'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      86 URIs      77 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-014-0508-7 schema:about N0dad4fc71c4d49898523dfb87f286054
2 N55e0b92d824b45be8b130b32e4a05921
3 N58e81adb299e4d6eb27cf88b2552191d
4 N5ebfadcaea1f49d097bc48f4ad1e07e7
5 N6b550fa8a9c9438b86703b2ddc92ab9c
6 N6e5a0637c7c84b1fab982471bcdcc0c7
7 N7618f1b2ff6047f596a0a6e89a24c0b4
8 N7d6e50ccd80f4d2d815ed59ea7348b9c
9 N8ffe0299306944e2b6049a9a4271dbaa
10 Na732024eceae4c33b91f8ea375718c50
11 Nab5e045c76554e7398cca7ff0851864c
12 Nd16213799d4a4569959caab4847f0cf5
13 Nde2119996f5e4ad899d73d8335fdf6b6
14 Ne333312823d843b08664bbd2b93c2b52
15 Nefe8a598234c401fa2850d624f55c75a
16 Nf647d7e2166a44aeae47f187e7f6e43c
17 anzsrc-for:11
18 anzsrc-for:1102
19 schema:author N890b6c9c53a2404390fb00fec5dbc668
20 schema:citation sg:pub.10.1007/s00330-006-0517-6
21 schema:datePublished 2014-08-06
22 schema:datePublishedReg 2014-08-06
23 schema:description The purpose of this study was to prospectively evaluate the diagnostic capability of single-phase dual-energy CT (DECT) angiography to differentiate acute and chronic pulmonary thromboembolism (APTE, CPTE). We prospectively enrolled 26 patients (M:F = 9:17; mean age, 61 years old) with a filling defect in the pulmonary artery on DECT angiography. They were divided into two groups—APTE and CPTE—based on the clinical criteria. Two investigators quantitatively measured the following parameters at the embolism and main pulmonary artery: CT attenuation density [Hounsfield unit (HU) values], iodine-related HU value (IHU), and iodine concentration (IC, mg/ml). These parameters of the embolism and their ratio divided by those of the main pulmonary artery were compared between APTE and CPTE groups. Among 26 patients, 15 were categorized into the APTE group and 11 into the CPTE group. The mean HU, IHU, and IC values of emboli were significantly different between the APTE and CPTE groups (32.2 ± 17.0 vs. 52.1 ± 13.6 HU; P = 0.016, 7.2 ± 2.8 vs. 27.3 ± 12.7 HU; P < 0.001, and 0.57 ± 0.23 vs. 1.56 ± 0.67; P < 0.001). The mean HU, IHU, and IC ratios between emboli and main pulmonary arteries were also significantly different between the two groups (0.085 ± 0.046 vs. 0.156 ± 0.064 HU; P = 0.003, 0.023 ± 0.013 vs. 0.099 ± 0.053; P < 0.001, and 0.048 ± 0.035 vs. 0.130 ± 0.064; P = 0.001). DECT angiography using a quantitative analytic methodology can be used to differentiate between APTE and CPTE.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N2b5b4d2c649244df8103b2ed9644cd19
27 Nabaf64e59b5e40f0ae035292ebad9cad
28 sg:journal.1025429
29 schema:keywords APTES
30 CPTES
31 CT
32 CT attenuation density
33 DECT angiography
34 HU
35 HU values
36 IC ratio
37 IC values
38 analytic methodology
39 angiography
40 artery
41 attenuation density
42 capability
43 chronic pulmonary thromboembolism
44 clinical criteria
45 concentration
46 criteria
47 defects
48 density
49 diagnostic capabilities
50 dual-energy CT
51 emboli
52 embolism
53 experience
54 filling defect
55 group
56 initial experience
57 investigators
58 iodine concentration
59 main pulmonary artery
60 mean HU
61 methodology
62 parameters
63 patients
64 pulmonary artery
65 pulmonary thromboembolism
66 purpose
67 quantitative analytic methodology
68 ratio
69 single-phase dual-energy CT
70 study
71 thromboembolism
72 values
73 schema:name Dual-energy CT for differentiating acute and chronic pulmonary thromboembolism: an initial experience
74 schema:pagination 113-120
75 schema:productId N4c6103314b5d4909be7d7774ce249db4
76 N5a1c8cd8e1e54f7784eaf58ddbace125
77 N7a40378e737f48e1867797b8e7b580be
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001811622
79 https://doi.org/10.1007/s10554-014-0508-7
80 schema:sdDatePublished 2022-09-02T15:57
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Ne529f046f4aa40f1bde6252739d22729
83 schema:url https://doi.org/10.1007/s10554-014-0508-7
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0dad4fc71c4d49898523dfb87f286054 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Multidetector Computed Tomography
89 rdf:type schema:DefinedTerm
90 N2508cebbc8924109adffdfc45e6d9e0f rdf:first sg:person.01143557676.31
91 rdf:rest N47997dd487d44927bfc417b172c985fc
92 N2b5b4d2c649244df8103b2ed9644cd19 schema:volumeNumber 30
93 rdf:type schema:PublicationVolume
94 N47997dd487d44927bfc417b172c985fc rdf:first sg:person.01160231265.97
95 rdf:rest Nd8e0c37771f044b49d6627260ff0f0d5
96 N4c6103314b5d4909be7d7774ce249db4 schema:name doi
97 schema:value 10.1007/s10554-014-0508-7
98 rdf:type schema:PropertyValue
99 N55e0b92d824b45be8b130b32e4a05921 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Iopamidol
101 rdf:type schema:DefinedTerm
102 N58e81adb299e4d6eb27cf88b2552191d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Predictive Value of Tests
104 rdf:type schema:DefinedTerm
105 N5a1c8cd8e1e54f7784eaf58ddbace125 schema:name pubmed_id
106 schema:value 25096053
107 rdf:type schema:PropertyValue
108 N5ebfadcaea1f49d097bc48f4ad1e07e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Aged
110 rdf:type schema:DefinedTerm
111 N6b550fa8a9c9438b86703b2ddc92ab9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Middle Aged
113 rdf:type schema:DefinedTerm
114 N6e5a0637c7c84b1fab982471bcdcc0c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Male
116 rdf:type schema:DefinedTerm
117 N7618f1b2ff6047f596a0a6e89a24c0b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Acute Disease
119 rdf:type schema:DefinedTerm
120 N7a40378e737f48e1867797b8e7b580be schema:name dimensions_id
121 schema:value pub.1001811622
122 rdf:type schema:PropertyValue
123 N7d6e50ccd80f4d2d815ed59ea7348b9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Aged, 80 and over
125 rdf:type schema:DefinedTerm
126 N890b6c9c53a2404390fb00fec5dbc668 rdf:first sg:person.01360103260.77
127 rdf:rest Ndf4c2bdd33ff4b0bafa379d11ebde6b9
128 N8ffe0299306944e2b6049a9a4271dbaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Chronic Disease
130 rdf:type schema:DefinedTerm
131 Na720d8fcc27c48699034595ad24402d0 rdf:first sg:person.01101305576.04
132 rdf:rest rdf:nil
133 Na732024eceae4c33b91f8ea375718c50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Pulmonary Artery
135 rdf:type schema:DefinedTerm
136 Nab5e045c76554e7398cca7ff0851864c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Diagnosis, Differential
138 rdf:type schema:DefinedTerm
139 Nabaf64e59b5e40f0ae035292ebad9cad schema:issueNumber Suppl 2
140 rdf:type schema:PublicationIssue
141 Nd16213799d4a4569959caab4847f0cf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Prospective Studies
143 rdf:type schema:DefinedTerm
144 Nd8e0c37771f044b49d6627260ff0f0d5 rdf:first sg:person.01014245442.81
145 rdf:rest Na720d8fcc27c48699034595ad24402d0
146 Nde2119996f5e4ad899d73d8335fdf6b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Female
148 rdf:type schema:DefinedTerm
149 Ndf4c2bdd33ff4b0bafa379d11ebde6b9 rdf:first sg:person.0631275763.56
150 rdf:rest N2508cebbc8924109adffdfc45e6d9e0f
151 Ne333312823d843b08664bbd2b93c2b52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Pulmonary Embolism
153 rdf:type schema:DefinedTerm
154 Ne529f046f4aa40f1bde6252739d22729 schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 Nefe8a598234c401fa2850d624f55c75a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Contrast Media
158 rdf:type schema:DefinedTerm
159 Nf647d7e2166a44aeae47f187e7f6e43c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
163 schema:name Medical and Health Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
166 schema:name Cardiorespiratory Medicine and Haematology
167 rdf:type schema:DefinedTerm
168 sg:journal.1025429 schema:issn 1569-5794
169 1573-0743
170 schema:name The International Journal of Cardiovascular Imaging
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.01014245442.81 schema:affiliation grid-institutes:grid.415562.1
174 schema:familyName Hong
175 schema:givenName Yoo Jin
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81
177 rdf:type schema:Person
178 sg:person.01101305576.04 schema:affiliation grid-institutes:grid.415562.1
179 schema:familyName Choi
180 schema:givenName Byoung Wook
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04
182 rdf:type schema:Person
183 sg:person.01143557676.31 schema:affiliation grid-institutes:grid.415562.1
184 schema:familyName Kim
185 schema:givenName Young Jin
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31
187 rdf:type schema:Person
188 sg:person.01160231265.97 schema:affiliation grid-institutes:grid.415562.1
189 schema:familyName Lee
190 schema:givenName Hye-Jeong
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97
192 rdf:type schema:Person
193 sg:person.01360103260.77 schema:affiliation grid-institutes:grid.415562.1
194 schema:familyName Kim
195 schema:givenName Seung-seob
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360103260.77
197 rdf:type schema:Person
198 sg:person.0631275763.56 schema:affiliation grid-institutes:grid.415562.1
199 schema:familyName Hur
200 schema:givenName Jin
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56
202 rdf:type schema:Person
203 sg:pub.10.1007/s00330-006-0517-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018874898
204 https://doi.org/10.1007/s00330-006-0517-6
205 rdf:type schema:CreativeWork
206 grid-institutes:grid.415562.1 schema:alternateName Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea
207 schema:name Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, South Korea
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...