Effect of kVp on image quality and accuracy in coronary CT angiography according to patient body size: a phantom study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

Sang Min Lee, Whal Lee, Jin Wook Chung, Eun-Ah Park, Jae Hyung Park

ABSTRACT

The aim is to investigate the effect of tube voltage and chest wall thickness on image quality, stenosis measurement, and radiation dose in coronary CT angiography (CCTA) in a phantom study. A phantom with tubes in a box at its center and concentric cylindrical plastic chambers of three layers at its periphery was constructed. The concentric cylinders were filled with oil or left empty to simulate different degrees of obesity. Retrospective CT scanning was performed at different kVps and mAs. Image noise, contrast to noise ratio (CNR), stenosis measurement, and radiation dose were obtained. A CNR higher than 10 was considered to be acceptable for clinical practice. Mean image noise was 51.7 at 80 kVp, 31.6 at 100 kVp, and 24.7 at 120 kVp (P < 0.001). A CNR greater than 10 could be achieved with all the images using 80 kVp as well as using 100 or 120 kVp. However, CNRs at 100 and 120 kVp were significantly higher than the CNR at 80 kVp (P < 0.001). There were no significant differences between 100 and 120 kVp. All stenosis measurements were overestimated. Accuracy of stenosis measurement was significantly correlated with CNR (P < 0.05), but not with kVps. Mean doses were 2.07 mSv at 80 kVp, 3.37 mSv at 100 kVp, and 5.17 mSv at 120 kVp (P < 0.001). CNR per radiation dose was highest at 80 kVp, regardless of chest wall thickness. For CCTA, using 80 kVp with high mAs is the best choice, regardless of chest wall thickness, for minimal radiation dose and sufficient image quality. More... »

PAGES

83-91

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-013-0298-3

DOI

http://dx.doi.org/10.1007/s10554-013-0298-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005063334

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24186237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "id": "sg:person.01315300754.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea", 
            "Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Whal", 
        "id": "sg:person.01201672757.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201672757.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Jin Wook", 
        "id": "sg:person.012015441540.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012015441540.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Eun-Ah", 
        "id": "sg:person.01207144044.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207144044.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Jae Hyung", 
        "id": "sg:person.0707307067.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707307067.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002160027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2332032107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007658135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200605000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007809540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200605000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007809540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2003.10.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021505367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)15268-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023338164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2007.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026657493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0786-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078235", 
          "https://doi.org/10.1007/s00330-007-0786-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0786-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078235", 
          "https://doi.org/10.1007/s00330-007-0786-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11547-007-0118-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028197246", 
          "https://doi.org/10.1007/s11547-007-0118-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2009.10.3.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028215828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2009.10.3.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028215828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.602490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030836310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032361679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483072032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032386157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.533471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2009.10.3.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034624178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2009.10.3.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034624178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2361078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035736326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-001-1278-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045179883", 
          "https://doi.org/10.1007/s00330-001-1278-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2311030191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045870566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa054017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049349128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2005.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051747420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.11.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053263770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/0007-1285-69-821-426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064560204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.70.833.9227231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064566320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.71.846.9849387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064566596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/78576048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064570192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.04.1489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.182.5.1821313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.184.6.01841940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326971"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "The aim is to investigate the effect of tube voltage and chest wall thickness on image quality, stenosis measurement, and radiation dose in coronary CT angiography (CCTA) in a phantom study. A phantom with tubes in a box at its center and concentric cylindrical plastic chambers of three layers at its periphery was constructed. The concentric cylinders were filled with oil or left empty to simulate different degrees of obesity. Retrospective CT scanning was performed at different kVps and mAs. Image noise, contrast to noise ratio (CNR), stenosis measurement, and radiation dose were obtained. A CNR higher than 10 was considered to be acceptable for clinical practice. Mean image noise was 51.7 at 80 kVp, 31.6 at 100 kVp, and 24.7 at 120 kVp (P < 0.001). A CNR greater than 10 could be achieved with all the images using 80 kVp as well as using 100 or 120 kVp. However, CNRs at 100 and 120 kVp were significantly higher than the CNR at 80 kVp (P < 0.001). There were no significant differences between 100 and 120 kVp. All stenosis measurements were overestimated. Accuracy of stenosis measurement was significantly correlated with CNR (P < 0.05), but not with kVps. Mean doses were 2.07 mSv at 80 kVp, 3.37 mSv at 100 kVp, and 5.17 mSv at 120 kVp (P < 0.001). CNR per radiation dose was highest at 80 kVp, regardless of chest wall thickness. For CCTA, using 80 kVp with high mAs is the best choice, regardless of chest wall thickness, for minimal radiation dose and sufficient image quality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-013-0298-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Effect of kVp on image quality and accuracy in coronary CT angiography according to patient body size: a phantom study", 
    "pagination": "83-91", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "181fe8b6000b7c8ed22a46867251877a81f78affc07c5817d9c70ad4b5834396"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24186237"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-013-0298-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005063334"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-013-0298-3", 
      "https://app.dimensions.ai/details/publication/pub.1005063334"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10554-013-0298-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-013-0298-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-013-0298-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-013-0298-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-013-0298-3'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      68 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-013-0298-3 schema:about N10e1a2181b514904af2cdac2edb5de63
2 N16bb6c11c5704dd4a940f3e97d2454fc
3 N2ed81a59140140af90e90544650a87f5
4 N4eeffd310a3942558902cc8635ee7e3d
5 N6e600c8713cb4ff3a6f86ea359b63ff1
6 N7ee78ac9fdd64520b50568e879ffb6fb
7 N7fa10dc106d842759a3d95e489156027
8 N915dc585fc4348169c414509bddd9428
9 Na82d2402786645f3bd1669a8dc940058
10 Nb32a11b0ffae45ec91786e172bba8f31
11 Nda3da102670b464ba07d59cf8684bd89
12 anzsrc-for:02
13 anzsrc-for:0299
14 schema:author N13a8a5e6110f4af7b90fb62971cb0e3f
15 schema:citation sg:pub.10.1007/s00330-001-1278-x
16 sg:pub.10.1007/s00330-007-0786-8
17 sg:pub.10.1007/s11547-007-0118-8
18 https://doi.org/10.1016/j.ahj.2005.02.048
19 https://doi.org/10.1016/j.ejrad.2007.05.003
20 https://doi.org/10.1016/j.jacc.2003.10.059
21 https://doi.org/10.1016/j.jacc.2005.05.056
22 https://doi.org/10.1016/j.jacc.2005.11.078
23 https://doi.org/10.1016/j.jcmg.2007.11.006
24 https://doi.org/10.1016/s0140-6736(03)15268-3
25 https://doi.org/10.1056/nejmoa054017
26 https://doi.org/10.1097/00004728-200605000-00008
27 https://doi.org/10.1118/1.2361078
28 https://doi.org/10.1148/radiol.2311030191
29 https://doi.org/10.1148/radiol.2332032107
30 https://doi.org/10.1148/radiol.2483072032
31 https://doi.org/10.1161/circulationaha.105.533471
32 https://doi.org/10.1161/circulationaha.105.602490
33 https://doi.org/10.1259/0007-1285-69-821-426
34 https://doi.org/10.1259/bjr.70.833.9227231
35 https://doi.org/10.1259/bjr.71.846.9849387
36 https://doi.org/10.1259/bjr/78576048
37 https://doi.org/10.2214/ajr.04.1489
38 https://doi.org/10.2214/ajr.05.0216
39 https://doi.org/10.2214/ajr.182.5.1821313
40 https://doi.org/10.2214/ajr.184.6.01841940
41 https://doi.org/10.3348/kjr.2009.10.3.235
42 https://doi.org/10.3348/kjr.2009.10.3.260
43 schema:datePublished 2013-12
44 schema:datePublishedReg 2013-12-01
45 schema:description The aim is to investigate the effect of tube voltage and chest wall thickness on image quality, stenosis measurement, and radiation dose in coronary CT angiography (CCTA) in a phantom study. A phantom with tubes in a box at its center and concentric cylindrical plastic chambers of three layers at its periphery was constructed. The concentric cylinders were filled with oil or left empty to simulate different degrees of obesity. Retrospective CT scanning was performed at different kVps and mAs. Image noise, contrast to noise ratio (CNR), stenosis measurement, and radiation dose were obtained. A CNR higher than 10 was considered to be acceptable for clinical practice. Mean image noise was 51.7 at 80 kVp, 31.6 at 100 kVp, and 24.7 at 120 kVp (P < 0.001). A CNR greater than 10 could be achieved with all the images using 80 kVp as well as using 100 or 120 kVp. However, CNRs at 100 and 120 kVp were significantly higher than the CNR at 80 kVp (P < 0.001). There were no significant differences between 100 and 120 kVp. All stenosis measurements were overestimated. Accuracy of stenosis measurement was significantly correlated with CNR (P < 0.05), but not with kVps. Mean doses were 2.07 mSv at 80 kVp, 3.37 mSv at 100 kVp, and 5.17 mSv at 120 kVp (P < 0.001). CNR per radiation dose was highest at 80 kVp, regardless of chest wall thickness. For CCTA, using 80 kVp with high mAs is the best choice, regardless of chest wall thickness, for minimal radiation dose and sufficient image quality.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N94f27aec8d994eabbbcfdcea3f791238
50 Nd908787e3bcd44308bd9a3c9d232d508
51 sg:journal.1025429
52 schema:name Effect of kVp on image quality and accuracy in coronary CT angiography according to patient body size: a phantom study
53 schema:pagination 83-91
54 schema:productId N30ec85d7b25944bd8b19fd85cd8176e5
55 N3967fcbce16c4160833d87dd6db1b84d
56 N531ae420b802428ba6324c44797ba08c
57 N622cd25c472848ef902f933740f8650f
58 Nc7ccb12f992b42ab89c2d07e0c2b4695
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005063334
60 https://doi.org/10.1007/s10554-013-0298-3
61 schema:sdDatePublished 2019-04-11T01:06
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N850d4531dc4645438e261240bfcfae3e
64 schema:url http://link.springer.com/10.1007%2Fs10554-013-0298-3
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N086987a7117e4f8facb2571cc8d2ddbd rdf:first sg:person.01201672757.20
69 rdf:rest N1a4abda1ab9f4abc85432d18f3d8b60c
70 N10e1a2181b514904af2cdac2edb5de63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Humans
72 rdf:type schema:DefinedTerm
73 N13a8a5e6110f4af7b90fb62971cb0e3f rdf:first sg:person.01315300754.59
74 rdf:rest N086987a7117e4f8facb2571cc8d2ddbd
75 N16bb6c11c5704dd4a940f3e97d2454fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Coronary Stenosis
77 rdf:type schema:DefinedTerm
78 N1a4abda1ab9f4abc85432d18f3d8b60c rdf:first sg:person.012015441540.69
79 rdf:rest N3d859082f6054375b977f33638d414da
80 N2ed81a59140140af90e90544650a87f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Radiation Dosage
82 rdf:type schema:DefinedTerm
83 N30ec85d7b25944bd8b19fd85cd8176e5 schema:name readcube_id
84 schema:value 181fe8b6000b7c8ed22a46867251877a81f78affc07c5817d9c70ad4b5834396
85 rdf:type schema:PropertyValue
86 N3967fcbce16c4160833d87dd6db1b84d schema:name doi
87 schema:value 10.1007/s10554-013-0298-3
88 rdf:type schema:PropertyValue
89 N3d859082f6054375b977f33638d414da rdf:first sg:person.01207144044.20
90 rdf:rest N53eae6183bf44d5f8e7b63752dffa4d9
91 N4eeffd310a3942558902cc8635ee7e3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Coronary Angiography
93 rdf:type schema:DefinedTerm
94 N531ae420b802428ba6324c44797ba08c schema:name dimensions_id
95 schema:value pub.1005063334
96 rdf:type schema:PropertyValue
97 N53eae6183bf44d5f8e7b63752dffa4d9 rdf:first sg:person.0707307067.22
98 rdf:rest rdf:nil
99 N622cd25c472848ef902f933740f8650f schema:name nlm_unique_id
100 schema:value 100969716
101 rdf:type schema:PropertyValue
102 N6e600c8713cb4ff3a6f86ea359b63ff1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Predictive Value of Tests
104 rdf:type schema:DefinedTerm
105 N7ee78ac9fdd64520b50568e879ffb6fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Signal-To-Noise Ratio
107 rdf:type schema:DefinedTerm
108 N7fa10dc106d842759a3d95e489156027 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Body Size
110 rdf:type schema:DefinedTerm
111 N850d4531dc4645438e261240bfcfae3e schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N915dc585fc4348169c414509bddd9428 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Tomography, X-Ray Computed
115 rdf:type schema:DefinedTerm
116 N94f27aec8d994eabbbcfdcea3f791238 schema:issueNumber Suppl 2
117 rdf:type schema:PublicationIssue
118 Na82d2402786645f3bd1669a8dc940058 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Phantoms, Imaging
120 rdf:type schema:DefinedTerm
121 Nb32a11b0ffae45ec91786e172bba8f31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Obesity
123 rdf:type schema:DefinedTerm
124 Nc7ccb12f992b42ab89c2d07e0c2b4695 schema:name pubmed_id
125 schema:value 24186237
126 rdf:type schema:PropertyValue
127 Nd908787e3bcd44308bd9a3c9d232d508 schema:volumeNumber 29
128 rdf:type schema:PublicationVolume
129 Nda3da102670b464ba07d59cf8684bd89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Body Mass Index
131 rdf:type schema:DefinedTerm
132 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
133 schema:name Physical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
136 schema:name Other Physical Sciences
137 rdf:type schema:DefinedTerm
138 sg:journal.1025429 schema:issn 1569-5794
139 1573-0743
140 schema:name The International Journal of Cardiovascular Imaging
141 rdf:type schema:Periodical
142 sg:person.012015441540.69 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
143 schema:familyName Chung
144 schema:givenName Jin Wook
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012015441540.69
146 rdf:type schema:Person
147 sg:person.01201672757.20 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
148 schema:familyName Lee
149 schema:givenName Whal
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201672757.20
151 rdf:type schema:Person
152 sg:person.01207144044.20 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
153 schema:familyName Park
154 schema:givenName Eun-Ah
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207144044.20
156 rdf:type schema:Person
157 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
158 schema:familyName Lee
159 schema:givenName Sang Min
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
161 rdf:type schema:Person
162 sg:person.0707307067.22 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
163 schema:familyName Park
164 schema:givenName Jae Hyung
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707307067.22
166 rdf:type schema:Person
167 sg:pub.10.1007/s00330-001-1278-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045179883
168 https://doi.org/10.1007/s00330-001-1278-x
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s00330-007-0786-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078235
171 https://doi.org/10.1007/s00330-007-0786-8
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11547-007-0118-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028197246
174 https://doi.org/10.1007/s11547-007-0118-8
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ahj.2005.02.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051747420
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ejrad.2007.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032361679
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jacc.2003.10.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021505367
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jacc.2005.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160027
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jacc.2005.11.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053263770
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jcmg.2007.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026657493
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0140-6736(03)15268-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023338164
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1056/nejmoa054017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049349128
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1097/00004728-200605000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007809540
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1118/1.2361078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035736326
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1148/radiol.2311030191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045870566
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiol.2332032107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007658135
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiol.2483072032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032386157
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1161/circulationaha.105.533471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983112
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1161/circulationaha.105.602490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030836310
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1259/0007-1285-69-821-426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064560204
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1259/bjr.70.833.9227231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566320
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1259/bjr.71.846.9849387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566596
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1259/bjr/78576048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064570192
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2214/ajr.04.1489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297191
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2214/ajr.05.0216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297467
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2214/ajr.182.5.1821313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326131
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2214/ajr.184.6.01841940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326971
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3348/kjr.2009.10.3.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034624178
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3348/kjr.2009.10.3.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028215828
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
227 schema:name Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
228 Department of Radiology, Seoul National University Hospital, 101, Daehangno, Jongno-gu, 110-744, Seoul, Korea
229 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...