Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06

AUTHORS

Rui Wang, Wei Yu, Yongmei Wang, Yi He, Lin Yang, Tao Bi, Jian Jiao, Qian Wang, Liquan Chi, Yang Yu, Zhaoqi Zhang

ABSTRACT

To determine the value of dual-energy CT (DECT) and combined information of perfusion and angiography in diagnosing coronary artery disease (CAD), with single photon emission computed tomography (SPECT) and quantitative coronary angiography (QCA) as a reference standard. Thirty-four patients were enrolled in this study. DECT was used as a contrast-enhanced retrospectively ECG-gated scan protocol during the rest state and tubes were set at 140/100 kV. DECT angiography (DE-CTA) and DECT perfusion (DE-CTP) were calculated from two kV images. DE-CTP results were compared with SPECT and DE-CTA with QCA, respectively. The combined DE-CTP with DE-CTA data were compared to QCA in diagnosis of obstructive CAD (stenosis ≥ 50%). DECT showed diagnostic image quality in 31 patients. Using SPECT as a reference, DE-CTP had sensitivity of 68%, specificity of 93%, and sensitivity of 81%, and specificity of 92% for identifying any type of perfusion deficits on the segment- and territory-based analysis, respectively. Using QCA as a reference standard, DE-CTA showed sensitivity of 82%, specificity of 91% and accuracy of 86% for detecting ≥50% coronary stenosis on the vessel-based analysis, whereas the combination of DE-CTA and DE-CTP gave sensitivity of 90%, specificity of 86% and accuracy of 88% for detecting ≥50% coronary stenosis, respectively. Combination of DE-CTP and DE-CTA may improve diagnostic performance compared to CTA alone for the diagnosis of significant coronary stenosis. More... »

PAGES

647-656

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-011-9881-7

DOI

http://dx.doi.org/10.1007/s10554-011-9881-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052614623

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21547377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Rui", 
        "id": "sg:person.0642401716.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642401716.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yongmei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yi", 
        "id": "sg:person.0667730315.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667730315.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lin", 
        "id": "sg:person.0576725475.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576725475.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Nuclear Medicine, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiao", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Nuclear Medicine, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chi", 
        "givenName": "Liquan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/circulationaha.107.745711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000044142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2481071451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001736289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.10.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009161565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-010-9676-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009478965", 
          "https://doi.org/10.1007/s10554-010-9676-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.107.688101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009844767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehn536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016066243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehm466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016239266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0517-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018874898", 
          "https://doi.org/10.1007/s00330-006-0517-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0517-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018874898", 
          "https://doi.org/10.1007/s00330-006-0517-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.037606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019640521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehn605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019746911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9156-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021153314", 
          "https://doi.org/10.1007/s12350-009-9156-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9156-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021153314", 
          "https://doi.org/10.1007/s12350-009-9156-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181dfda60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024186911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181dfda60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024186911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181dfda60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024186911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181dfda60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024186911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(94)90424-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025970600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2009.03.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028580911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028985969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1022-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032444946", 
          "https://doi.org/10.1007/s00330-008-1022-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1022-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032444946", 
          "https://doi.org/10.1007/s00330-008-1022-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2008.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033925456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000048965.56529.c2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036313717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0402.102975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039853393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2008.156216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043166183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2009.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045684332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482071307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/circj.cj-08-0940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047721312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048255447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9318-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048434153", 
          "https://doi.org/10.1007/s10554-008-9318-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9318-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048434153", 
          "https://doi.org/10.1007/s10554-008-9318-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050686451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/circj.cj-09-0524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051849345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9150-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052860040", 
          "https://doi.org/10.1007/s12350-009-9150-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9150-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052860040", 
          "https://doi.org/10.1007/s12350-009-9150-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1897-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053307583", 
          "https://doi.org/10.1007/s00330-010-1897-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2442061218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053343799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.51.4.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063335684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.4026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077061634", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06", 
    "datePublishedReg": "2011-06-01", 
    "description": "To determine the value of dual-energy CT (DECT) and combined information of perfusion and angiography in diagnosing coronary artery disease (CAD), with single photon emission computed tomography (SPECT) and quantitative coronary angiography (QCA) as a reference standard. Thirty-four patients were enrolled in this study. DECT was used as a contrast-enhanced retrospectively ECG-gated scan protocol during the rest state and tubes were set at 140/100 kV. DECT angiography (DE-CTA) and DECT perfusion (DE-CTP) were calculated from two kV images. DE-CTP results were compared with SPECT and DE-CTA with QCA, respectively. The combined DE-CTP with DE-CTA data were compared to QCA in diagnosis of obstructive CAD (stenosis \u2265 50%). DECT showed diagnostic image quality in 31 patients. Using SPECT as a reference, DE-CTP had sensitivity of 68%, specificity of 93%, and sensitivity of 81%, and specificity of 92% for identifying any type of perfusion deficits on the segment- and territory-based analysis, respectively. Using QCA as a reference standard, DE-CTA showed sensitivity of 82%, specificity of 91% and accuracy of 86% for detecting \u226550% coronary stenosis on the vessel-based analysis, whereas the combination of DE-CTA and DE-CTP gave sensitivity of 90%, specificity of 86% and accuracy of 88% for detecting \u226550% coronary stenosis, respectively. Combination of DE-CTP and DE-CTA may improve diagnostic performance compared to CTA alone for the diagnosis of significant coronary stenosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-011-9881-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography", 
    "pagination": "647-656", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa9eae2daa4a3cc5d8991fcceaf044e38bad2e4516f0778af545caa671f00015"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21547377"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-011-9881-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052614623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-011-9881-7", 
      "https://app.dimensions.ai/details/publication/pub.1052614623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10554-011-9881-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9881-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9881-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9881-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9881-7'


 

This table displays all metadata directly associated to this object as RDF triples.

307 TRIPLES      21 PREDICATES      79 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-011-9881-7 schema:about N0cfa42798031454998f38b2884f61b1a
2 N1c5ad12e42274a00a4cab825ef9ab9b5
3 N24f7d34b837146a1b1c8e213dae3181a
4 N2cb9e40506564bf299fe3ee4ada4abce
5 N431ab35c97284be594478867bf7b3d78
6 N45c9b2269a8046f6a3909c922840cd7e
7 N4ae8bf9eb36d4a8a929b5c28b6081fba
8 N6c84257afce14542b893cedb2a47f8eb
9 N7d942293a2164035b2d9b9e82cd2bb7d
10 N8a8fd0d99c924d38be6b4bb8c1504b59
11 Nbb253d19906c459aa9f4e3f993bb6384
12 Nc5314e301d574effa091f44d160bad79
13 Ndcf83203a50349a5ad2d4bf631f8842e
14 Ne8d1414fdd5a4dfd932d6dddc4ca3109
15 Neee15781b69942e98272e438f4168dac
16 Nf0efe787e66a425ba7b071126a0e222d
17 anzsrc-for:11
18 anzsrc-for:1102
19 schema:author N34dd63b923384705b39af73e8e633fbd
20 schema:citation sg:pub.10.1007/s00330-006-0517-6
21 sg:pub.10.1007/s00330-008-1022-x
22 sg:pub.10.1007/s00330-010-1897-1
23 sg:pub.10.1007/s10554-008-9318-0
24 sg:pub.10.1007/s10554-010-9676-2
25 sg:pub.10.1007/s12350-009-9150-5
26 sg:pub.10.1007/s12350-009-9156-z
27 https://app.dimensions.ai/details/publication/pub.1077061634
28 https://doi.org/10.1016/0735-1097(94)90424-3
29 https://doi.org/10.1016/j.amjcard.2009.02.005
30 https://doi.org/10.1016/j.amjcard.2009.03.051
31 https://doi.org/10.1016/j.ejrad.2008.09.010
32 https://doi.org/10.1016/j.ejrad.2010.11.022
33 https://doi.org/10.1016/j.jacc.2003.08.011
34 https://doi.org/10.1016/j.jacc.2006.08.028
35 https://doi.org/10.1016/j.jacc.2006.10.069
36 https://doi.org/10.1016/j.jacc.2009.06.014
37 https://doi.org/10.1093/eurheartj/ehm466
38 https://doi.org/10.1093/eurheartj/ehn536
39 https://doi.org/10.1093/eurheartj/ehn605
40 https://doi.org/10.1097/rli.0b013e3181dfda60
41 https://doi.org/10.1136/hrt.2008.156216
42 https://doi.org/10.1148/radiol.2442061218
43 https://doi.org/10.1148/radiol.2481071451
44 https://doi.org/10.1148/radiol.2482071307
45 https://doi.org/10.1161/01.cir.0000048965.56529.c2
46 https://doi.org/10.1161/01.cir.51.4.5
47 https://doi.org/10.1161/circulationaha.107.688101
48 https://doi.org/10.1161/circulationaha.107.745711
49 https://doi.org/10.1161/hc0402.102975
50 https://doi.org/10.1253/circj.cj-08-0940
51 https://doi.org/10.1253/circj.cj-09-0524
52 https://doi.org/10.2214/ajr.07.4026
53 https://doi.org/10.2967/jnumed.106.037606
54 schema:datePublished 2011-06
55 schema:datePublishedReg 2011-06-01
56 schema:description To determine the value of dual-energy CT (DECT) and combined information of perfusion and angiography in diagnosing coronary artery disease (CAD), with single photon emission computed tomography (SPECT) and quantitative coronary angiography (QCA) as a reference standard. Thirty-four patients were enrolled in this study. DECT was used as a contrast-enhanced retrospectively ECG-gated scan protocol during the rest state and tubes were set at 140/100 kV. DECT angiography (DE-CTA) and DECT perfusion (DE-CTP) were calculated from two kV images. DE-CTP results were compared with SPECT and DE-CTA with QCA, respectively. The combined DE-CTP with DE-CTA data were compared to QCA in diagnosis of obstructive CAD (stenosis ≥ 50%). DECT showed diagnostic image quality in 31 patients. Using SPECT as a reference, DE-CTP had sensitivity of 68%, specificity of 93%, and sensitivity of 81%, and specificity of 92% for identifying any type of perfusion deficits on the segment- and territory-based analysis, respectively. Using QCA as a reference standard, DE-CTA showed sensitivity of 82%, specificity of 91% and accuracy of 86% for detecting ≥50% coronary stenosis on the vessel-based analysis, whereas the combination of DE-CTA and DE-CTP gave sensitivity of 90%, specificity of 86% and accuracy of 88% for detecting ≥50% coronary stenosis, respectively. Combination of DE-CTP and DE-CTA may improve diagnostic performance compared to CTA alone for the diagnosis of significant coronary stenosis.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N49b14d5100564634ac8c52db1a8d0d4c
61 Nc9190dd4e01f48dabe5946d8e5332945
62 sg:journal.1025429
63 schema:name Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography
64 schema:pagination 647-656
65 schema:productId N232802222c1d4279a75ccf509ff1b624
66 N7e902eb0709d4ea2a1907ffea78c4f5a
67 N8f105a283afe44d1adb45799c849aa77
68 Nd66344f8aa7343a383343c27e69241ef
69 Nedc657957fc64293b838a291568f1a10
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052614623
71 https://doi.org/10.1007/s10554-011-9881-7
72 schema:sdDatePublished 2019-04-10T15:53
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nd8e5a3a716fd4c608379ad6d36071dc4
75 schema:url http://link.springer.com/10.1007%2Fs10554-011-9881-7
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0cfa42798031454998f38b2884f61b1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Tomography, Emission-Computed, Single-Photon
81 rdf:type schema:DefinedTerm
82 N0dfa5503529f4d5b8f6cab0ed46abba3 rdf:first N1574ff6d35c04514b04ce1e39c796c43
83 rdf:rest N16ee724666e4440ab396572aebde81c8
84 N0f434a4fc32e441baf591ba0b2ea3a25 rdf:first N185f9534b46d4317b4028c095f9be64b
85 rdf:rest Nd7427da4e7854499a465e824abf984ba
86 N1574ff6d35c04514b04ce1e39c796c43 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
87 schema:familyName Bi
88 schema:givenName Tao
89 rdf:type schema:Person
90 N16ee724666e4440ab396572aebde81c8 rdf:first Nca01212627fb455199ef990724b6c2bc
91 rdf:rest Ne6dbfb75be244692ad7b131324e60727
92 N185f9534b46d4317b4028c095f9be64b schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
93 schema:familyName Chi
94 schema:givenName Liquan
95 rdf:type schema:Person
96 N1c5ad12e42274a00a4cab825ef9ab9b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Coronary Circulation
98 rdf:type schema:DefinedTerm
99 N232802222c1d4279a75ccf509ff1b624 schema:name dimensions_id
100 schema:value pub.1052614623
101 rdf:type schema:PropertyValue
102 N24f7d34b837146a1b1c8e213dae3181a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Predictive Value of Tests
104 rdf:type schema:DefinedTerm
105 N2cb9e40506564bf299fe3ee4ada4abce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name China
107 rdf:type schema:DefinedTerm
108 N300f3ccfab0545b68a577f3c7309045c schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
109 schema:familyName Wang
110 schema:givenName Yongmei
111 rdf:type schema:Person
112 N34dd63b923384705b39af73e8e633fbd rdf:first sg:person.0642401716.48
113 rdf:rest N68a683dc55ed4f4b9173e8f6fdd9fd64
114 N431ab35c97284be594478867bf7b3d78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Myocardial Perfusion Imaging
116 rdf:type schema:DefinedTerm
117 N45c9b2269a8046f6a3909c922840cd7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Aged
119 rdf:type schema:DefinedTerm
120 N49b14d5100564634ac8c52db1a8d0d4c schema:issueNumber 5
121 rdf:type schema:PublicationIssue
122 N4ad7ade96cff44b4bde8362d14ce1707 rdf:first sg:person.014030237157.28
123 rdf:rest rdf:nil
124 N4ae8bf9eb36d4a8a929b5c28b6081fba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 N53e967972a9942dab6b72a74c6a98450 rdf:first sg:person.0576725475.78
128 rdf:rest N0dfa5503529f4d5b8f6cab0ed46abba3
129 N68a683dc55ed4f4b9173e8f6fdd9fd64 rdf:first sg:person.01143631075.45
130 rdf:rest N9b98afe08214432cbd4e212a51793c3a
131 N6c84257afce14542b893cedb2a47f8eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Severity of Illness Index
133 rdf:type schema:DefinedTerm
134 N7af90ba61c6a4c02a28a134cc01f0ce4 rdf:first sg:person.0667730315.91
135 rdf:rest N53e967972a9942dab6b72a74c6a98450
136 N7d942293a2164035b2d9b9e82cd2bb7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Coronary Stenosis
138 rdf:type schema:DefinedTerm
139 N7e902eb0709d4ea2a1907ffea78c4f5a schema:name doi
140 schema:value 10.1007/s10554-011-9881-7
141 rdf:type schema:PropertyValue
142 N8a8fd0d99c924d38be6b4bb8c1504b59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Sensitivity and Specificity
144 rdf:type schema:DefinedTerm
145 N8f105a283afe44d1adb45799c849aa77 schema:name nlm_unique_id
146 schema:value 100969716
147 rdf:type schema:PropertyValue
148 N9b98afe08214432cbd4e212a51793c3a rdf:first N300f3ccfab0545b68a577f3c7309045c
149 rdf:rest N7af90ba61c6a4c02a28a134cc01f0ce4
150 Nbb253d19906c459aa9f4e3f993bb6384 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Coronary Angiography
152 rdf:type schema:DefinedTerm
153 Nc5314e301d574effa091f44d160bad79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Adult
155 rdf:type schema:DefinedTerm
156 Nc9190dd4e01f48dabe5946d8e5332945 schema:volumeNumber 27
157 rdf:type schema:PublicationVolume
158 Nca01212627fb455199ef990724b6c2bc schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
159 schema:familyName Jiao
160 schema:givenName Jian
161 rdf:type schema:Person
162 Ncc342965f1884bba9084754e63477564 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
163 schema:familyName Wang
164 schema:givenName Qian
165 rdf:type schema:Person
166 Nd66344f8aa7343a383343c27e69241ef schema:name readcube_id
167 schema:value fa9eae2daa4a3cc5d8991fcceaf044e38bad2e4516f0778af545caa671f00015
168 rdf:type schema:PropertyValue
169 Nd7427da4e7854499a465e824abf984ba rdf:first Ndc312f964a644c6e998ead290a5d30fc
170 rdf:rest N4ad7ade96cff44b4bde8362d14ce1707
171 Nd8e5a3a716fd4c608379ad6d36071dc4 schema:name Springer Nature - SN SciGraph project
172 rdf:type schema:Organization
173 Ndc312f964a644c6e998ead290a5d30fc schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
174 schema:familyName Yu
175 schema:givenName Yang
176 rdf:type schema:Person
177 Ndcf83203a50349a5ad2d4bf631f8842e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Female
179 rdf:type schema:DefinedTerm
180 Ne6dbfb75be244692ad7b131324e60727 rdf:first Ncc342965f1884bba9084754e63477564
181 rdf:rest N0f434a4fc32e441baf591ba0b2ea3a25
182 Ne8d1414fdd5a4dfd932d6dddc4ca3109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Male
184 rdf:type schema:DefinedTerm
185 Nedc657957fc64293b838a291568f1a10 schema:name pubmed_id
186 schema:value 21547377
187 rdf:type schema:PropertyValue
188 Neee15781b69942e98272e438f4168dac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Middle Aged
190 rdf:type schema:DefinedTerm
191 Nf0efe787e66a425ba7b071126a0e222d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Tomography, X-Ray Computed
193 rdf:type schema:DefinedTerm
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
198 schema:name Cardiorespiratory Medicine and Haematology
199 rdf:type schema:DefinedTerm
200 sg:journal.1025429 schema:issn 1569-5794
201 1573-0743
202 schema:name The International Journal of Cardiovascular Imaging
203 rdf:type schema:Periodical
204 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
205 schema:familyName Yu
206 schema:givenName Wei
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
208 rdf:type schema:Person
209 sg:person.014030237157.28 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
210 schema:familyName Zhang
211 schema:givenName Zhaoqi
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
213 rdf:type schema:Person
214 sg:person.0576725475.78 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
215 schema:familyName Yang
216 schema:givenName Lin
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576725475.78
218 rdf:type schema:Person
219 sg:person.0642401716.48 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
220 schema:familyName Wang
221 schema:givenName Rui
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642401716.48
223 rdf:type schema:Person
224 sg:person.0667730315.91 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
225 schema:familyName He
226 schema:givenName Yi
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667730315.91
228 rdf:type schema:Person
229 sg:pub.10.1007/s00330-006-0517-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018874898
230 https://doi.org/10.1007/s00330-006-0517-6
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00330-008-1022-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032444946
233 https://doi.org/10.1007/s00330-008-1022-x
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s00330-010-1897-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053307583
236 https://doi.org/10.1007/s00330-010-1897-1
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s10554-008-9318-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048434153
239 https://doi.org/10.1007/s10554-008-9318-0
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/s10554-010-9676-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009478965
242 https://doi.org/10.1007/s10554-010-9676-2
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s12350-009-9150-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052860040
245 https://doi.org/10.1007/s12350-009-9150-5
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s12350-009-9156-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021153314
248 https://doi.org/10.1007/s12350-009-9156-z
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1077061634 schema:CreativeWork
251 https://doi.org/10.1016/0735-1097(94)90424-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025970600
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.amjcard.2009.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045684332
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.amjcard.2009.03.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028580911
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.ejrad.2008.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033925456
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.ejrad.2010.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048255447
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.jacc.2003.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065334
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.jacc.2006.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050686451
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.jacc.2006.10.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009161565
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.jacc.2009.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028985969
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/eurheartj/ehm466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016239266
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/eurheartj/ehn536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016066243
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1093/eurheartj/ehn605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019746911
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1097/rli.0b013e3181dfda60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024186911
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1136/hrt.2008.156216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043166183
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1148/radiol.2442061218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053343799
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1148/radiol.2481071451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001736289
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1148/radiol.2482071307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045736768
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/01.cir.0000048965.56529.c2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036313717
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1161/01.cir.51.4.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063335684
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1161/circulationaha.107.688101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009844767
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1161/circulationaha.107.745711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000044142
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1161/hc0402.102975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039853393
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1253/circj.cj-08-0940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047721312
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1253/circj.cj-09-0524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051849345
298 rdf:type schema:CreativeWork
299 https://doi.org/10.2214/ajr.07.4026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299368
300 rdf:type schema:CreativeWork
301 https://doi.org/10.2967/jnumed.106.037606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019640521
302 rdf:type schema:CreativeWork
303 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
304 schema:name Department of Cardiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
305 Department of Nuclear Medicine, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
306 Department of Radiology, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
307 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...