Assessment of atherosclerotic plaques in a rabbit model by delayed-phase contrast-enhanced CT angiography: comparison with histopathology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01-30

AUTHORS

Jin Hur, Young Jin Kim, Hyo Sup Shim, Hye-Jeong Lee, Ji Eun Nam, Kyu Ok Choe, Byoung Wook Choi

ABSTRACT

The aim of this study was to compare delayed-phase computed tomography angiography (CTA) attenuation values with histopathology, in ability to differentiate between fibrous and lipid-rich plaques in an experimental rabbit model. Twelve atherosclerotic rabbits underwent CTA of the abdominal aorta. The scan protocol included early-phase scans (EP), delayed scans at 90 s after contrast injection (DP90s), delayed scans at 10 min after contrast injection (DP10min), and delayed scan with saline infusion (DPSaline). Plaque composition was analyzed by histopathology (% of lipid-rich, fibrous and macrophage areas) and CT attenuation values in Hounsfield units. Using histopathology as the reference standard (n = 119), the overall sensitivity, specificity and accuracy of 64-slice CTA for the detection of plaques was 59, 100 and 79% for the EP scans; 88, 100 and 94% for the DP90s scans; 81, 100 and 90% for the DP10min scans; and 53, 100 and 76% for the DPSaline scans. CT density measurements showed a substantial overlap between fibrous and lipid-rich plaques, and poor correlations with the percentage of macrophage areas in both fibrous and lipid-rich plaques (r = 0.408, and r = 0.333). In delayed-phase 64-slice CTA, DP90s images have the best diagnostic performance for the detection of aortic plaques. More... »

PAGES

353-363

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-011-9801-x

DOI

http://dx.doi.org/10.1007/s10554-011-9801-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012360474

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21279690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aorta, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aortic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aortography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Models, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Macrophages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rabbits", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hur", 
        "givenName": "Jin", 
        "id": "sg:person.0631275763.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Jin", 
        "id": "sg:person.01143557676.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shim", 
        "givenName": "Hyo Sup", 
        "id": "sg:person.0751457456.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751457456.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hye-Jeong", 
        "id": "sg:person.01160231265.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nam", 
        "givenName": "Ji Eun", 
        "id": "sg:person.01001441704.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001441704.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choe", 
        "givenName": "Kyu Ok", 
        "id": "sg:person.01115670304.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115670304.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byoung Wook", 
        "id": "sg:person.01101305576.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:caim.0000041936.21786.ac", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015182409", 
          "https://doi.org/10.1023/b:caim.0000041936.21786.ac"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001371417", 
          "https://doi.org/10.1038/nature01323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9562-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000793907", 
          "https://doi.org/10.1007/s10554-009-9562-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021479972", 
          "https://doi.org/10.1016/j.nuclcard.2005.11.003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2697-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044328325", 
          "https://doi.org/10.1007/s00330-005-2697-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-004-7015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049553476", 
          "https://doi.org/10.1007/s10554-004-7015-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01-30", 
    "datePublishedReg": "2011-01-30", 
    "description": "The aim of this study was to compare delayed-phase computed tomography angiography (CTA) attenuation values with histopathology, in ability to differentiate between fibrous and lipid-rich plaques in an experimental rabbit model. Twelve atherosclerotic rabbits underwent CTA of the abdominal aorta. The scan protocol included early-phase scans (EP), delayed scans at 90\u00a0s after contrast injection (DP90s), delayed scans at 10\u00a0min after contrast injection (DP10min), and delayed scan with saline infusion (DPSaline). Plaque composition was analyzed by histopathology (% of lipid-rich, fibrous and macrophage areas) and CT attenuation values in Hounsfield units. Using histopathology as the reference standard (n\u00a0=\u00a0119), the overall sensitivity, specificity and accuracy of 64-slice CTA for the detection of plaques was 59, 100 and 79% for the EP scans; 88, 100 and 94% for the DP90s scans; 81, 100 and 90% for the DP10min scans; and 53, 100 and 76% for the DPSaline scans. CT density measurements showed a substantial overlap between fibrous and lipid-rich plaques, and poor correlations with the percentage of macrophage areas in both fibrous and lipid-rich plaques (r\u00a0=\u00a00.408, and r\u00a0=\u00a00.333). In delayed-phase 64-slice CTA, DP90s images have the best diagnostic performance for the detection of aortic plaques.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10554-011-9801-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "lipid-rich plaques", 
      "early-phase scans", 
      "contrast injection", 
      "rabbit model", 
      "contrast-enhanced CT angiography", 
      "CT density measurements", 
      "detection of plaques", 
      "experimental rabbit model", 
      "good diagnostic performance", 
      "CT attenuation values", 
      "aortic plaques", 
      "macrophage area", 
      "abdominal aorta", 
      "saline infusion", 
      "CT angiography", 
      "plaque composition", 
      "atherosclerotic plaques", 
      "atherosclerotic rabbits", 
      "histopathology", 
      "plaques", 
      "overall sensitivity", 
      "diagnostic performance", 
      "scan protocol", 
      "Hounsfield units", 
      "scans", 
      "reference standard", 
      "CTA", 
      "poor correlation", 
      "attenuation values", 
      "injection", 
      "substantial overlap", 
      "angiography", 
      "aorta", 
      "infusion", 
      "rabbits", 
      "aim", 
      "min", 
      "specificity", 
      "percentage", 
      "assessment", 
      "study", 
      "detection", 
      "protocol", 
      "sensitivity", 
      "correlation", 
      "attenuation", 
      "ability", 
      "units", 
      "standards", 
      "density measurements", 
      "overlap", 
      "comparison", 
      "area", 
      "model", 
      "values", 
      "measurements", 
      "images", 
      "accuracy", 
      "composition", 
      "performance"
    ], 
    "name": "Assessment of atherosclerotic plaques in a rabbit model by delayed-phase contrast-enhanced CT angiography: comparison with histopathology", 
    "pagination": "353-363", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012360474"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-011-9801-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21279690"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-011-9801-x", 
      "https://app.dimensions.ai/details/publication/pub.1012360474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10554-011-9801-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9801-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9801-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9801-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-011-9801-x'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      108 URIs      94 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-011-9801-x schema:about N06067a387ac140249fd441a343b805bd
2 N0cada97ef4e24030b875f7fd230dba6a
3 N1f73e2c6a8cb41649a4f944ef621868d
4 N21659ff0f58b4e2cbc838b2f3cb1fc6f
5 N59b7eb5c5f7b492fa317800b604982b8
6 N67a30c6c785d4a119696495da5857eab
7 N6e26145333254864860c1d6769694fb4
8 N6e4afe49deda4c7289543d8fd153f3c4
9 N714a698f397646dc8153207ade506142
10 N7888d72b0e5e482bb3674f4a74f2245a
11 Na0cd2d1b50724231a8fb8d1d55178949
12 Na4abead104fd45b2ab1a415a60caf1f8
13 Nac007f68e61543158e7b6c5e352def3b
14 Nb9538c9ecdb84a778f327d8fa97ccf9f
15 Nb9a86239ba4a4765ab6d48279386d24b
16 Nc818f0cb24134b98b9c25a0d4d4ed9b3
17 Nf3c63735998e4e76a9b7bc9466287490
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N9192edd6d9484971a5fc94221a694ae3
21 schema:citation sg:pub.10.1007/s00330-005-2697-x
22 sg:pub.10.1007/s10554-004-7015-1
23 sg:pub.10.1007/s10554-009-9562-y
24 sg:pub.10.1016/j.nuclcard.2005.11.003
25 sg:pub.10.1023/b:caim.0000041936.21786.ac
26 sg:pub.10.1038/nature01323
27 schema:datePublished 2011-01-30
28 schema:datePublishedReg 2011-01-30
29 schema:description The aim of this study was to compare delayed-phase computed tomography angiography (CTA) attenuation values with histopathology, in ability to differentiate between fibrous and lipid-rich plaques in an experimental rabbit model. Twelve atherosclerotic rabbits underwent CTA of the abdominal aorta. The scan protocol included early-phase scans (EP), delayed scans at 90 s after contrast injection (DP90s), delayed scans at 10 min after contrast injection (DP10min), and delayed scan with saline infusion (DPSaline). Plaque composition was analyzed by histopathology (% of lipid-rich, fibrous and macrophage areas) and CT attenuation values in Hounsfield units. Using histopathology as the reference standard (n = 119), the overall sensitivity, specificity and accuracy of 64-slice CTA for the detection of plaques was 59, 100 and 79% for the EP scans; 88, 100 and 94% for the DP90s scans; 81, 100 and 90% for the DP10min scans; and 53, 100 and 76% for the DPSaline scans. CT density measurements showed a substantial overlap between fibrous and lipid-rich plaques, and poor correlations with the percentage of macrophage areas in both fibrous and lipid-rich plaques (r = 0.408, and r = 0.333). In delayed-phase 64-slice CTA, DP90s images have the best diagnostic performance for the detection of aortic plaques.
30 schema:genre article
31 schema:isAccessibleForFree false
32 schema:isPartOf N215c9d4174ef41b8b6fb320347136747
33 Na62a8e8f569c4e42814b03deadeaf75e
34 sg:journal.1025429
35 schema:keywords CT angiography
36 CT attenuation values
37 CT density measurements
38 CTA
39 Hounsfield units
40 abdominal aorta
41 ability
42 accuracy
43 aim
44 angiography
45 aorta
46 aortic plaques
47 area
48 assessment
49 atherosclerotic plaques
50 atherosclerotic rabbits
51 attenuation
52 attenuation values
53 comparison
54 composition
55 contrast injection
56 contrast-enhanced CT angiography
57 correlation
58 density measurements
59 detection
60 detection of plaques
61 diagnostic performance
62 early-phase scans
63 experimental rabbit model
64 good diagnostic performance
65 histopathology
66 images
67 infusion
68 injection
69 lipid-rich plaques
70 macrophage area
71 measurements
72 min
73 model
74 overall sensitivity
75 overlap
76 percentage
77 performance
78 plaque composition
79 plaques
80 poor correlation
81 protocol
82 rabbit model
83 rabbits
84 reference standard
85 saline infusion
86 scan protocol
87 scans
88 sensitivity
89 specificity
90 standards
91 study
92 substantial overlap
93 units
94 values
95 schema:name Assessment of atherosclerotic plaques in a rabbit model by delayed-phase contrast-enhanced CT angiography: comparison with histopathology
96 schema:pagination 353-363
97 schema:productId N0b9f46b212684d2d9d73bdfabed74999
98 Need7ecffc2b14ff6986a6eef2b75a6b8
99 Nfd4c91359b754e508375e6ca8690d4fd
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012360474
101 https://doi.org/10.1007/s10554-011-9801-x
102 schema:sdDatePublished 2022-10-01T06:36
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Nc04cabf33e284292a9305f09c14b47d0
105 schema:url https://doi.org/10.1007/s10554-011-9801-x
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N06067a387ac140249fd441a343b805bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Lipids
111 rdf:type schema:DefinedTerm
112 N0b9f46b212684d2d9d73bdfabed74999 schema:name doi
113 schema:value 10.1007/s10554-011-9801-x
114 rdf:type schema:PropertyValue
115 N0cada97ef4e24030b875f7fd230dba6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Plaque, Atherosclerotic
117 rdf:type schema:DefinedTerm
118 N1f73e2c6a8cb41649a4f944ef621868d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Aortic Diseases
120 rdf:type schema:DefinedTerm
121 N215c9d4174ef41b8b6fb320347136747 schema:issueNumber 2
122 rdf:type schema:PublicationIssue
123 N21659ff0f58b4e2cbc838b2f3cb1fc6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Aorta, Abdominal
125 rdf:type schema:DefinedTerm
126 N240dd24d4591452dacbbac5073c439c4 rdf:first sg:person.01160231265.97
127 rdf:rest Nc811d667c5c046599ef320cd29fa23e1
128 N42061eaba77d4874893c434ea1d1282b rdf:first sg:person.01143557676.31
129 rdf:rest Nb96fca234d714a59a75a5eaedac32d20
130 N59b7eb5c5f7b492fa317800b604982b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Aortography
132 rdf:type schema:DefinedTerm
133 N67a30c6c785d4a119696495da5857eab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Male
135 rdf:type schema:DefinedTerm
136 N6e26145333254864860c1d6769694fb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Atherosclerosis
138 rdf:type schema:DefinedTerm
139 N6e4afe49deda4c7289543d8fd153f3c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Reproducibility of Results
141 rdf:type schema:DefinedTerm
142 N714a698f397646dc8153207ade506142 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Sensitivity and Specificity
144 rdf:type schema:DefinedTerm
145 N7888d72b0e5e482bb3674f4a74f2245a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Disease Models, Animal
147 rdf:type schema:DefinedTerm
148 N9192edd6d9484971a5fc94221a694ae3 rdf:first sg:person.0631275763.56
149 rdf:rest N42061eaba77d4874893c434ea1d1282b
150 Na0cd2d1b50724231a8fb8d1d55178949 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Fibrosis
152 rdf:type schema:DefinedTerm
153 Na4abead104fd45b2ab1a415a60caf1f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Contrast Media
155 rdf:type schema:DefinedTerm
156 Na62a8e8f569c4e42814b03deadeaf75e schema:volumeNumber 28
157 rdf:type schema:PublicationVolume
158 Nac007f68e61543158e7b6c5e352def3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Tomography, X-Ray Computed
160 rdf:type schema:DefinedTerm
161 Nb9538c9ecdb84a778f327d8fa97ccf9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Macrophages
163 rdf:type schema:DefinedTerm
164 Nb96fca234d714a59a75a5eaedac32d20 rdf:first sg:person.0751457456.56
165 rdf:rest N240dd24d4591452dacbbac5073c439c4
166 Nb9a86239ba4a4765ab6d48279386d24b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Predictive Value of Tests
168 rdf:type schema:DefinedTerm
169 Nbd935756b71b4142bfdffd2c27419c27 rdf:first sg:person.01115670304.62
170 rdf:rest Nd5f26fbb842840f9bd869a6df0140c0d
171 Nc04cabf33e284292a9305f09c14b47d0 schema:name Springer Nature - SN SciGraph project
172 rdf:type schema:Organization
173 Nc811d667c5c046599ef320cd29fa23e1 rdf:first sg:person.01001441704.07
174 rdf:rest Nbd935756b71b4142bfdffd2c27419c27
175 Nc818f0cb24134b98b9c25a0d4d4ed9b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Animals
177 rdf:type schema:DefinedTerm
178 Nd5f26fbb842840f9bd869a6df0140c0d rdf:first sg:person.01101305576.04
179 rdf:rest rdf:nil
180 Need7ecffc2b14ff6986a6eef2b75a6b8 schema:name dimensions_id
181 schema:value pub.1012360474
182 rdf:type schema:PropertyValue
183 Nf3c63735998e4e76a9b7bc9466287490 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Rabbits
185 rdf:type schema:DefinedTerm
186 Nfd4c91359b754e508375e6ca8690d4fd schema:name pubmed_id
187 schema:value 21279690
188 rdf:type schema:PropertyValue
189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
190 schema:name Medical and Health Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
193 schema:name Clinical Sciences
194 rdf:type schema:DefinedTerm
195 sg:journal.1025429 schema:issn 1569-5794
196 1573-0743
197 schema:name The International Journal of Cardiovascular Imaging
198 schema:publisher Springer Nature
199 rdf:type schema:Periodical
200 sg:person.01001441704.07 schema:affiliation grid-institutes:grid.415562.1
201 schema:familyName Nam
202 schema:givenName Ji Eun
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001441704.07
204 rdf:type schema:Person
205 sg:person.01101305576.04 schema:affiliation grid-institutes:grid.415562.1
206 schema:familyName Choi
207 schema:givenName Byoung Wook
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04
209 rdf:type schema:Person
210 sg:person.01115670304.62 schema:affiliation grid-institutes:grid.415562.1
211 schema:familyName Choe
212 schema:givenName Kyu Ok
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115670304.62
214 rdf:type schema:Person
215 sg:person.01143557676.31 schema:affiliation grid-institutes:grid.415562.1
216 schema:familyName Kim
217 schema:givenName Young Jin
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31
219 rdf:type schema:Person
220 sg:person.01160231265.97 schema:affiliation grid-institutes:grid.415562.1
221 schema:familyName Lee
222 schema:givenName Hye-Jeong
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97
224 rdf:type schema:Person
225 sg:person.0631275763.56 schema:affiliation grid-institutes:grid.415562.1
226 schema:familyName Hur
227 schema:givenName Jin
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56
229 rdf:type schema:Person
230 sg:person.0751457456.56 schema:affiliation grid-institutes:grid.15444.30
231 schema:familyName Shim
232 schema:givenName Hyo Sup
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751457456.56
234 rdf:type schema:Person
235 sg:pub.10.1007/s00330-005-2697-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044328325
236 https://doi.org/10.1007/s00330-005-2697-x
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s10554-004-7015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049553476
239 https://doi.org/10.1007/s10554-004-7015-1
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/s10554-009-9562-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000793907
242 https://doi.org/10.1007/s10554-009-9562-y
243 rdf:type schema:CreativeWork
244 sg:pub.10.1016/j.nuclcard.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021479972
245 https://doi.org/10.1016/j.nuclcard.2005.11.003
246 rdf:type schema:CreativeWork
247 sg:pub.10.1023/b:caim.0000041936.21786.ac schema:sameAs https://app.dimensions.ai/details/publication/pub.1015182409
248 https://doi.org/10.1023/b:caim.0000041936.21786.ac
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nature01323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001371417
251 https://doi.org/10.1038/nature01323
252 rdf:type schema:CreativeWork
253 grid-institutes:grid.15444.30 schema:alternateName Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
254 schema:name Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
255 rdf:type schema:Organization
256 grid-institutes:grid.415562.1 schema:alternateName Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea
257 schema:name Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, 134 Sinchon-dong, 120-752, Seodaemun-gu, Seoul, South Korea
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...