320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

Chuanchen Zhang, Zhaoqi Zhang, Zixu Yan, Lei Xu, Wei Yu, Rui Wang

ABSTRACT

To prospectively evaluate image quality parameters, contrast volume and radiation dose at the 100-kilovolt (kV) setting during coronary computed tomographic angiography (CCTA) on a 320-row computed tomography scanner. We enrolled 107 consecutive patients with a heart rate <65 beats per minute (bpm) undergoing prospective electrocardiogram (ECG)-triggered CCTA. Forty patients with a body mass index (BMI) <25 kg/m(2) were scanned using 100-kV tube voltage settings, while 67 patients were scanned using 120-kV protocols. Image quality was assessed by two readers unaware of patient information and scan parameters. Attenuation in the aorta and perivascular fat tissue and image noise were measured. Contrast-to-noise ratios (CNRs) and contrast material volumes were calculated. The effective radiation doses were estimated using a chest conversion coefficient (0.017). Diagnostic image quality was achieved in 98.2% of coronary segments with 100-kV CCTA and 98.6% of coronary segments with 120-kV CCTA, with no significant differences in image quality scores for each coronary segment. Vessel attenuation, image noise, and CNR were not significantly different between the 100- and 120-kV protocols. Mean contrast injection rate and mean material volume were significantly lower for the 100-kV CCTA (4.35 ± 0.28 ml/s and 53.13 ± 3.77 ml, respectively) than for the 120-kV CCTA (5.16 ± 0.21 ml/s and 62.40 ± 3.66 ml respectively; P < 0.001). The effective radiation dose was 2.12 ± 0.19 mSv for 100-kV CCTA, a reduction of 54% compared to 4.61 ± 0.82 mSv for 120-kV CCTA. A 100-kV CCTA can be implemented in patients with a BMI < 25 kg/m(2). The 100-kV setting allows significant reductions in contrast material volume and effective radiation dose while maintaining adequate diagnostic image quality. More... »

PAGES

1059-1068

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5

DOI

http://dx.doi.org/10.1007/s10554-010-9754-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042620284

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21110100


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac-Gated Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chuanchen", 
        "id": "sg:person.01105702465.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105702465.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Zixu", 
        "id": "sg:person.01027402475.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027402475.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "id": "sg:person.0713154075.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Rui", 
        "id": "sg:person.0642401716.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642401716.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/circulationaha.106.634808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001613860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002160027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31815ea873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005381836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31815ea873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005381836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1692-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010453428", 
          "https://doi.org/10.1007/s00330-009-1692-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1692-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010453428", 
          "https://doi.org/10.1007/s00330-009-1692-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2008.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017395017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-0966-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023746890", 
          "https://doi.org/10.1007/s00330-008-0966-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-0966-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023746890", 
          "https://doi.org/10.1007/s00330-008-0966-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482072192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024935051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025927070", 
          "https://doi.org/10.1007/s10554-009-9433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025927070", 
          "https://doi.org/10.1007/s10554-009-9433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9308-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026084106", 
          "https://doi.org/10.1007/s10554-008-9308-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2009.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026530090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2007.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026657493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2009.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026937699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2008.05.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027122555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2009.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027354141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0786-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078235", 
          "https://doi.org/10.1007/s00330-007-0786-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0786-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078235", 
          "https://doi.org/10.1007/s00330-007-0786-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2009.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028751002", 
          "https://doi.org/10.1038/nrcardio.2009.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2009.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.602490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030836310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2009.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031111467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483072032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032386157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.533471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000236422.35761.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034755139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000236422.35761.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034755139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2008.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035503600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.298.3.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000048965.56529.c2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036313717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2463070989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037037103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehp571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037926070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.05200709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037961409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2531090065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040898294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9535-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044896001", 
          "https://doi.org/10.1007/s10554-009-9535-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9535-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044896001", 
          "https://doi.org/10.1007/s10554-009-9535-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9535-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044896001", 
          "https://doi.org/10.1007/s10554-009-9535-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2311030191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045870566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046273989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31803b93cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049206841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31803b93cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049206841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.859280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053471912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.51.4.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063335684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/66519303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064569910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.3124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.1347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.3543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "To prospectively evaluate image quality parameters, contrast volume and radiation dose at the 100-kilovolt (kV) setting during coronary computed tomographic angiography (CCTA) on a 320-row computed tomography scanner. We enrolled 107 consecutive patients with a heart rate <65 beats per minute (bpm) undergoing prospective electrocardiogram (ECG)-triggered CCTA. Forty patients with a body mass index (BMI) <25\u00a0kg/m(2) were scanned using 100-kV tube voltage settings, while 67 patients were scanned using 120-kV protocols. Image quality was assessed by two readers unaware of patient information and scan parameters. Attenuation in the aorta and perivascular fat tissue and image noise were measured. Contrast-to-noise ratios (CNRs) and contrast material volumes were calculated. The effective radiation doses were estimated using a chest conversion coefficient (0.017). Diagnostic image quality was achieved in 98.2% of coronary segments with 100-kV CCTA and 98.6% of coronary segments with 120-kV CCTA, with no significant differences in image quality scores for each coronary segment. Vessel attenuation, image noise, and CNR were not significantly different between the 100- and 120-kV protocols. Mean contrast injection rate and mean material volume were significantly lower for the 100-kV CCTA (4.35\u00a0\u00b1\u00a00.28\u00a0ml/s and 53.13\u00a0\u00b1\u00a03.77\u00a0ml, respectively) than for the 120-kV CCTA (5.16\u00a0\u00b1\u00a00.21\u00a0ml/s and 62.40\u00a0\u00b1\u00a03.66\u00a0ml respectively; P\u00a0<\u00a00.001). The effective radiation dose was 2.12\u00a0\u00b1\u00a00.19\u00a0mSv for 100-kV CCTA, a reduction of 54% compared to 4.61\u00a0\u00b1\u00a00.82\u00a0mSv for 120-kV CCTA. A 100-kV CCTA can be implemented in patients with a BMI\u00a0<\u00a025\u00a0kg/m(2). The 100-kV setting allows significant reductions in contrast material volume and effective radiation dose while maintaining adequate diagnostic image quality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-010-9754-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose", 
    "pagination": "1059-1068", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb049bf7a0349323945efdf7e9a79a20c8fa0f76eba8c3f35c877b1bce29a59a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21110100"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-010-9754-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042620284"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-010-9754-5", 
      "https://app.dimensions.ai/details/publication/pub.1042620284"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10554-010-9754-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      89 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-010-9754-5 schema:about N1340a938a38c41d683690ef454d84aa8
2 N18d1162f135946a183a48360145fde09
3 N1c7795c6910c4a7cbf2bd377e953a272
4 N2a2c271fc6474e8ab53b466cb9248e64
5 N49d5224ec62842d090b5d60c29472d8f
6 N51e8d9a3726946a09c73df890f54e710
7 N596e04d585b44513877efa24b34ce20c
8 N5ff20709d61b48c3b05f3691f889c18f
9 N66534d6e10fb4a72a3805cfd15f97ce4
10 N7adfd9fb4012420baf153997462a141a
11 N7fdabf5db13e4839951766bd82ac4b3d
12 N8489d4e43de2495d89dbcbebc1494f97
13 N917035bac6a943a898623edf3a375f91
14 Na7108f5a9c674e58b55f8f59e4cb4371
15 Nb26b4bca0fae4b38b76f70ff8f8e75f1
16 Nc32c197002804a53a30cfd1e2f94a2fc
17 Nc4b45c8542404be98ae3f1dfb2233886
18 Nd11f49260f9a4dc1bfde947f6820c3c1
19 Ndf5efa65ca1e469cb681790c07b1f81b
20 Ned215fc036c7468183cb793ae74948f1
21 anzsrc-for:02
22 anzsrc-for:0299
23 schema:author N8f1989437cfd419189f81259d4408564
24 schema:citation sg:pub.10.1007/s00330-007-0786-8
25 sg:pub.10.1007/s00330-008-0966-1
26 sg:pub.10.1007/s00330-009-1692-z
27 sg:pub.10.1007/s10554-008-9308-2
28 sg:pub.10.1007/s10554-009-9433-6
29 sg:pub.10.1007/s10554-009-9535-1
30 sg:pub.10.1038/nrcardio.2009.53
31 https://doi.org/10.1001/jama.2009.54
32 https://doi.org/10.1001/jama.298.3.317
33 https://doi.org/10.1016/j.acra.2009.09.010
34 https://doi.org/10.1016/j.ejrad.2009.07.012
35 https://doi.org/10.1016/j.jacc.2005.05.056
36 https://doi.org/10.1016/j.jacc.2009.04.027
37 https://doi.org/10.1016/j.jcct.2008.05.146
38 https://doi.org/10.1016/j.jcct.2008.07.003
39 https://doi.org/10.1016/j.jcct.2008.12.010
40 https://doi.org/10.1016/j.jcct.2009.05.013
41 https://doi.org/10.1016/j.jcmg.2007.11.006
42 https://doi.org/10.1016/j.jcmg.2009.02.015
43 https://doi.org/10.1093/eurheartj/ehp571
44 https://doi.org/10.1097/01.rct.0000236422.35761.a1
45 https://doi.org/10.1097/rct.0b013e31815ea873
46 https://doi.org/10.1097/rli.0b013e31803b93cf
47 https://doi.org/10.1148/radiol.2311030191
48 https://doi.org/10.1148/radiol.2463070989
49 https://doi.org/10.1148/radiol.2482072192
50 https://doi.org/10.1148/radiol.2483072032
51 https://doi.org/10.1148/radiol.2531090065
52 https://doi.org/10.1161/01.cir.0000048965.56529.c2
53 https://doi.org/10.1161/01.cir.51.4.5
54 https://doi.org/10.1161/circulationaha.105.533471
55 https://doi.org/10.1161/circulationaha.105.602490
56 https://doi.org/10.1161/circulationaha.106.634808
57 https://doi.org/10.1161/circulationaha.109.859280
58 https://doi.org/10.1259/bjr/66519303
59 https://doi.org/10.2214/ajr.05.0216
60 https://doi.org/10.2214/ajr.07.3124
61 https://doi.org/10.2214/ajr.08.1347
62 https://doi.org/10.2214/ajr.09.3543
63 https://doi.org/10.2215/cjn.05200709
64 schema:datePublished 2011-10
65 schema:datePublishedReg 2011-10-01
66 schema:description To prospectively evaluate image quality parameters, contrast volume and radiation dose at the 100-kilovolt (kV) setting during coronary computed tomographic angiography (CCTA) on a 320-row computed tomography scanner. We enrolled 107 consecutive patients with a heart rate <65 beats per minute (bpm) undergoing prospective electrocardiogram (ECG)-triggered CCTA. Forty patients with a body mass index (BMI) <25 kg/m(2) were scanned using 100-kV tube voltage settings, while 67 patients were scanned using 120-kV protocols. Image quality was assessed by two readers unaware of patient information and scan parameters. Attenuation in the aorta and perivascular fat tissue and image noise were measured. Contrast-to-noise ratios (CNRs) and contrast material volumes were calculated. The effective radiation doses were estimated using a chest conversion coefficient (0.017). Diagnostic image quality was achieved in 98.2% of coronary segments with 100-kV CCTA and 98.6% of coronary segments with 120-kV CCTA, with no significant differences in image quality scores for each coronary segment. Vessel attenuation, image noise, and CNR were not significantly different between the 100- and 120-kV protocols. Mean contrast injection rate and mean material volume were significantly lower for the 100-kV CCTA (4.35 ± 0.28 ml/s and 53.13 ± 3.77 ml, respectively) than for the 120-kV CCTA (5.16 ± 0.21 ml/s and 62.40 ± 3.66 ml respectively; P < 0.001). The effective radiation dose was 2.12 ± 0.19 mSv for 100-kV CCTA, a reduction of 54% compared to 4.61 ± 0.82 mSv for 120-kV CCTA. A 100-kV CCTA can be implemented in patients with a BMI < 25 kg/m(2). The 100-kV setting allows significant reductions in contrast material volume and effective radiation dose while maintaining adequate diagnostic image quality.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree false
70 schema:isPartOf N6ba16b08c9804c2a85c8c1cfdda4f93e
71 N90d0027f61ff40bb8af1495a7d914163
72 sg:journal.1025429
73 schema:name 320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose
74 schema:pagination 1059-1068
75 schema:productId N68d7e0eb61e94cd689471d0bde71f976
76 N83f46101e25543798cfa7a74f616b999
77 N8959b8fa85c24a39a8c4a0068b3f0489
78 Nc28e8bed5b3142bab04b158d334812c6
79 Nf66328c094bd4d3eb811b2d4dba493b1
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042620284
81 https://doi.org/10.1007/s10554-010-9754-5
82 schema:sdDatePublished 2019-04-11T01:00
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N0483187900f54e5ab5e2ece793d1b99f
85 schema:url http://link.springer.com/10.1007/s10554-010-9754-5
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0483187900f54e5ab5e2ece793d1b99f schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N1340a938a38c41d683690ef454d84aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Tomography, X-Ray Computed
93 rdf:type schema:DefinedTerm
94 N18d1162f135946a183a48360145fde09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Heart Rate
96 rdf:type schema:DefinedTerm
97 N1c7795c6910c4a7cbf2bd377e953a272 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name China
99 rdf:type schema:DefinedTerm
100 N25db43f4c09a4587abd3ca96f0a1e289 rdf:first sg:person.0642401716.48
101 rdf:rest rdf:nil
102 N2a2c271fc6474e8ab53b466cb9248e64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Body Mass Index
104 rdf:type schema:DefinedTerm
105 N49d5224ec62842d090b5d60c29472d8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Chi-Square Distribution
107 rdf:type schema:DefinedTerm
108 N4aa995b73e0647ad98def154c8795fa6 rdf:first sg:person.014030237157.28
109 rdf:rest N524063af4db643329315f0288a4e356f
110 N51e8d9a3726946a09c73df890f54e710 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Middle Aged
112 rdf:type schema:DefinedTerm
113 N524063af4db643329315f0288a4e356f rdf:first sg:person.01027402475.85
114 rdf:rest Nf96e006c59784034b0ba0186727a6c47
115 N596e04d585b44513877efa24b34ce20c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Aged
117 rdf:type schema:DefinedTerm
118 N5ff20709d61b48c3b05f3691f889c18f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Feasibility Studies
120 rdf:type schema:DefinedTerm
121 N66534d6e10fb4a72a3805cfd15f97ce4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Humans
123 rdf:type schema:DefinedTerm
124 N68d7e0eb61e94cd689471d0bde71f976 schema:name dimensions_id
125 schema:value pub.1042620284
126 rdf:type schema:PropertyValue
127 N6ba16b08c9804c2a85c8c1cfdda4f93e schema:volumeNumber 27
128 rdf:type schema:PublicationVolume
129 N7adfd9fb4012420baf153997462a141a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Contrast Media
131 rdf:type schema:DefinedTerm
132 N7fdabf5db13e4839951766bd82ac4b3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cardiac-Gated Imaging Techniques
134 rdf:type schema:DefinedTerm
135 N83f46101e25543798cfa7a74f616b999 schema:name pubmed_id
136 schema:value 21110100
137 rdf:type schema:PropertyValue
138 N8489d4e43de2495d89dbcbebc1494f97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Female
140 rdf:type schema:DefinedTerm
141 N8959b8fa85c24a39a8c4a0068b3f0489 schema:name nlm_unique_id
142 schema:value 100969716
143 rdf:type schema:PropertyValue
144 N8f1989437cfd419189f81259d4408564 rdf:first sg:person.01105702465.29
145 rdf:rest N4aa995b73e0647ad98def154c8795fa6
146 N90d0027f61ff40bb8af1495a7d914163 schema:issueNumber 7
147 rdf:type schema:PublicationIssue
148 N917035bac6a943a898623edf3a375f91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Radiographic Image Interpretation, Computer-Assisted
150 rdf:type schema:DefinedTerm
151 Na7108f5a9c674e58b55f8f59e4cb4371 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Male
153 rdf:type schema:DefinedTerm
154 Nb26b4bca0fae4b38b76f70ff8f8e75f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Predictive Value of Tests
156 rdf:type schema:DefinedTerm
157 Nc28e8bed5b3142bab04b158d334812c6 schema:name readcube_id
158 schema:value cb049bf7a0349323945efdf7e9a79a20c8fa0f76eba8c3f35c877b1bce29a59a
159 rdf:type schema:PropertyValue
160 Nc32c197002804a53a30cfd1e2f94a2fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Coronary Angiography
162 rdf:type schema:DefinedTerm
163 Nc4b45c8542404be98ae3f1dfb2233886 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Electrocardiography
165 rdf:type schema:DefinedTerm
166 Nd11f49260f9a4dc1bfde947f6820c3c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Prospective Studies
168 rdf:type schema:DefinedTerm
169 Ndf5efa65ca1e469cb681790c07b1f81b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Radiation Dosage
171 rdf:type schema:DefinedTerm
172 Ned215fc036c7468183cb793ae74948f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Coronary Artery Disease
174 rdf:type schema:DefinedTerm
175 Nf595e0b84b5d4a95a10b4430135c244f rdf:first sg:person.01143631075.45
176 rdf:rest N25db43f4c09a4587abd3ca96f0a1e289
177 Nf66328c094bd4d3eb811b2d4dba493b1 schema:name doi
178 schema:value 10.1007/s10554-010-9754-5
179 rdf:type schema:PropertyValue
180 Nf96e006c59784034b0ba0186727a6c47 rdf:first sg:person.0713154075.07
181 rdf:rest Nf595e0b84b5d4a95a10b4430135c244f
182 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
183 schema:name Physical Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
186 schema:name Other Physical Sciences
187 rdf:type schema:DefinedTerm
188 sg:journal.1025429 schema:issn 1569-5794
189 1573-0743
190 schema:name The International Journal of Cardiovascular Imaging
191 rdf:type schema:Periodical
192 sg:person.01027402475.85 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
193 schema:familyName Yan
194 schema:givenName Zixu
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027402475.85
196 rdf:type schema:Person
197 sg:person.01105702465.29 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
198 schema:familyName Zhang
199 schema:givenName Chuanchen
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105702465.29
201 rdf:type schema:Person
202 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
203 schema:familyName Yu
204 schema:givenName Wei
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
206 rdf:type schema:Person
207 sg:person.014030237157.28 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
208 schema:familyName Zhang
209 schema:givenName Zhaoqi
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
211 rdf:type schema:Person
212 sg:person.0642401716.48 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
213 schema:familyName Wang
214 schema:givenName Rui
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642401716.48
216 rdf:type schema:Person
217 sg:person.0713154075.07 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
218 schema:familyName Xu
219 schema:givenName Lei
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07
221 rdf:type schema:Person
222 sg:pub.10.1007/s00330-007-0786-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078235
223 https://doi.org/10.1007/s00330-007-0786-8
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00330-008-0966-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023746890
226 https://doi.org/10.1007/s00330-008-0966-1
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00330-009-1692-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010453428
229 https://doi.org/10.1007/s00330-009-1692-z
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s10554-008-9308-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026084106
232 https://doi.org/10.1007/s10554-008-9308-2
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s10554-009-9433-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927070
235 https://doi.org/10.1007/s10554-009-9433-6
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s10554-009-9535-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044896001
238 https://doi.org/10.1007/s10554-009-9535-1
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/nrcardio.2009.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028751002
241 https://doi.org/10.1038/nrcardio.2009.53
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1001/jama.2009.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026937699
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1001/jama.298.3.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295152
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.acra.2009.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031111467
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.ejrad.2009.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026530090
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jacc.2005.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160027
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jacc.2009.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046273989
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jcct.2008.05.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027122555
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.jcct.2008.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395017
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.jcct.2008.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035503600
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.jcct.2009.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354141
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.jcmg.2007.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026657493
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.jcmg.2009.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103166
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/eurheartj/ehp571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037926070
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1097/01.rct.0000236422.35761.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034755139
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1097/rct.0b013e31815ea873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005381836
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1097/rli.0b013e31803b93cf schema:sameAs https://app.dimensions.ai/details/publication/pub.1049206841
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1148/radiol.2311030191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045870566
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1148/radiol.2463070989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037037103
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1148/radiol.2482072192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024935051
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1148/radiol.2483072032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032386157
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1148/radiol.2531090065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040898294
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/01.cir.0000048965.56529.c2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036313717
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1161/01.cir.51.4.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063335684
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1161/circulationaha.105.533471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983112
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1161/circulationaha.105.602490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030836310
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1161/circulationaha.106.634808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001613860
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1161/circulationaha.109.859280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053471912
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1259/bjr/66519303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569910
298 rdf:type schema:CreativeWork
299 https://doi.org/10.2214/ajr.05.0216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297467
300 rdf:type schema:CreativeWork
301 https://doi.org/10.2214/ajr.07.3124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299006
302 rdf:type schema:CreativeWork
303 https://doi.org/10.2214/ajr.08.1347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299651
304 rdf:type schema:CreativeWork
305 https://doi.org/10.2214/ajr.09.3543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300529
306 rdf:type schema:CreativeWork
307 https://doi.org/10.2215/cjn.05200709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037961409
308 rdf:type schema:CreativeWork
309 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
310 schema:name Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People’s Republic of China
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...