320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

Chuanchen Zhang, Zhaoqi Zhang, Zixu Yan, Lei Xu, Wei Yu, Rui Wang

ABSTRACT

To prospectively evaluate image quality parameters, contrast volume and radiation dose at the 100-kilovolt (kV) setting during coronary computed tomographic angiography (CCTA) on a 320-row computed tomography scanner. We enrolled 107 consecutive patients with a heart rate <65 beats per minute (bpm) undergoing prospective electrocardiogram (ECG)-triggered CCTA. Forty patients with a body mass index (BMI) <25 kg/m(2) were scanned using 100-kV tube voltage settings, while 67 patients were scanned using 120-kV protocols. Image quality was assessed by two readers unaware of patient information and scan parameters. Attenuation in the aorta and perivascular fat tissue and image noise were measured. Contrast-to-noise ratios (CNRs) and contrast material volumes were calculated. The effective radiation doses were estimated using a chest conversion coefficient (0.017). Diagnostic image quality was achieved in 98.2% of coronary segments with 100-kV CCTA and 98.6% of coronary segments with 120-kV CCTA, with no significant differences in image quality scores for each coronary segment. Vessel attenuation, image noise, and CNR were not significantly different between the 100- and 120-kV protocols. Mean contrast injection rate and mean material volume were significantly lower for the 100-kV CCTA (4.35 ± 0.28 ml/s and 53.13 ± 3.77 ml, respectively) than for the 120-kV CCTA (5.16 ± 0.21 ml/s and 62.40 ± 3.66 ml respectively; P < 0.001). The effective radiation dose was 2.12 ± 0.19 mSv for 100-kV CCTA, a reduction of 54% compared to 4.61 ± 0.82 mSv for 120-kV CCTA. A 100-kV CCTA can be implemented in patients with a BMI < 25 kg/m(2). The 100-kV setting allows significant reductions in contrast material volume and effective radiation dose while maintaining adequate diagnostic image quality. More... »

PAGES

1059-1068

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5

DOI

http://dx.doi.org/10.1007/s10554-010-9754-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042620284

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21110100


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac-Gated Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chuanchen", 
        "id": "sg:person.01105702465.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105702465.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Zixu", 
        "id": "sg:person.01027402475.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027402475.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "id": "sg:person.0713154075.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Rui", 
        "id": "sg:person.0642401716.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642401716.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/circulationaha.106.634808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001613860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002160027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31815ea873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005381836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31815ea873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005381836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1692-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010453428", 
          "https://doi.org/10.1007/s00330-009-1692-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1692-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010453428", 
          "https://doi.org/10.1007/s00330-009-1692-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2008.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017395017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-0966-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023746890", 
          "https://doi.org/10.1007/s00330-008-0966-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-0966-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023746890", 
          "https://doi.org/10.1007/s00330-008-0966-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482072192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024935051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025927070", 
          "https://doi.org/10.1007/s10554-009-9433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025927070", 
          "https://doi.org/10.1007/s10554-009-9433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9308-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026084106", 
          "https://doi.org/10.1007/s10554-008-9308-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2009.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026530090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2007.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026657493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2009.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026937699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2008.05.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027122555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2009.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027354141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0786-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078235", 
          "https://doi.org/10.1007/s00330-007-0786-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0786-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078235", 
          "https://doi.org/10.1007/s00330-007-0786-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2009.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028751002", 
          "https://doi.org/10.1038/nrcardio.2009.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2009.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.602490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030836310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2009.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031111467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483072032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032386157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.533471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000236422.35761.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034755139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000236422.35761.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034755139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2008.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035503600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.298.3.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000048965.56529.c2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036313717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2463070989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037037103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehp571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037926070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.05200709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037961409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2531090065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040898294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9535-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044896001", 
          "https://doi.org/10.1007/s10554-009-9535-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9535-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044896001", 
          "https://doi.org/10.1007/s10554-009-9535-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9535-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044896001", 
          "https://doi.org/10.1007/s10554-009-9535-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2311030191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045870566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046273989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31803b93cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049206841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31803b93cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049206841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.859280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053471912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.51.4.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063335684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/66519303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064569910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.3124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.1347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.3543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "To prospectively evaluate image quality parameters, contrast volume and radiation dose at the 100-kilovolt (kV) setting during coronary computed tomographic angiography (CCTA) on a 320-row computed tomography scanner. We enrolled 107 consecutive patients with a heart rate <65 beats per minute (bpm) undergoing prospective electrocardiogram (ECG)-triggered CCTA. Forty patients with a body mass index (BMI) <25\u00a0kg/m(2) were scanned using 100-kV tube voltage settings, while 67 patients were scanned using 120-kV protocols. Image quality was assessed by two readers unaware of patient information and scan parameters. Attenuation in the aorta and perivascular fat tissue and image noise were measured. Contrast-to-noise ratios (CNRs) and contrast material volumes were calculated. The effective radiation doses were estimated using a chest conversion coefficient (0.017). Diagnostic image quality was achieved in 98.2% of coronary segments with 100-kV CCTA and 98.6% of coronary segments with 120-kV CCTA, with no significant differences in image quality scores for each coronary segment. Vessel attenuation, image noise, and CNR were not significantly different between the 100- and 120-kV protocols. Mean contrast injection rate and mean material volume were significantly lower for the 100-kV CCTA (4.35\u00a0\u00b1\u00a00.28\u00a0ml/s and 53.13\u00a0\u00b1\u00a03.77\u00a0ml, respectively) than for the 120-kV CCTA (5.16\u00a0\u00b1\u00a00.21\u00a0ml/s and 62.40\u00a0\u00b1\u00a03.66\u00a0ml respectively; P\u00a0<\u00a00.001). The effective radiation dose was 2.12\u00a0\u00b1\u00a00.19\u00a0mSv for 100-kV CCTA, a reduction of 54% compared to 4.61\u00a0\u00b1\u00a00.82\u00a0mSv for 120-kV CCTA. A 100-kV CCTA can be implemented in patients with a BMI\u00a0<\u00a025\u00a0kg/m(2). The 100-kV setting allows significant reductions in contrast material volume and effective radiation dose while maintaining adequate diagnostic image quality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-010-9754-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose", 
    "pagination": "1059-1068", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb049bf7a0349323945efdf7e9a79a20c8fa0f76eba8c3f35c877b1bce29a59a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21110100"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-010-9754-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042620284"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-010-9754-5", 
      "https://app.dimensions.ai/details/publication/pub.1042620284"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10554-010-9754-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-010-9754-5'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      89 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-010-9754-5 schema:about N0d5661c6a3fd44b495e3a47f92c97753
2 N0fa9fbc1227e43d9a7d8e2de41d82906
3 N119476a6e4504340888aa97b76a43c3a
4 N2317e4b1770947abadc6bf9c60faf1cd
5 N2a97c339b60a40b8ac027f5cedab08e9
6 N2f32160ee5f04290ba60951407829357
7 N45d522582dde447a8c5391b1969c0910
8 N48a8d8b790bd4f869dddee678d99b070
9 N4ed84636aa294c3b94a5e739dafd8011
10 N5972cb27bbb4413da05752d783f02343
11 N5ca564d0c53243188adaa41c9ebcaf37
12 N71896d6486654071814d9549a6118068
13 N834d87d1b8b34198ab2390635e0ccb12
14 N84e84ad583b04e78b2468f80f7d07f0e
15 N9e33d427899c4edea94953e6828a2712
16 Nb91f0ca4b001485391410f01c19e1a98
17 Nbecb60d9edb44c4fa42d14e6ee70edaf
18 Nc4c8e67fc8034fbeaa466b7537943dc8
19 Nca1f8d4b0cf04011b8b6ad2d42ad3141
20 Nfafac4b3c6f14702af7ead28fb3b401e
21 anzsrc-for:02
22 anzsrc-for:0299
23 schema:author N3484c4287fcd49609eaa8059a8dee261
24 schema:citation sg:pub.10.1007/s00330-007-0786-8
25 sg:pub.10.1007/s00330-008-0966-1
26 sg:pub.10.1007/s00330-009-1692-z
27 sg:pub.10.1007/s10554-008-9308-2
28 sg:pub.10.1007/s10554-009-9433-6
29 sg:pub.10.1007/s10554-009-9535-1
30 sg:pub.10.1038/nrcardio.2009.53
31 https://doi.org/10.1001/jama.2009.54
32 https://doi.org/10.1001/jama.298.3.317
33 https://doi.org/10.1016/j.acra.2009.09.010
34 https://doi.org/10.1016/j.ejrad.2009.07.012
35 https://doi.org/10.1016/j.jacc.2005.05.056
36 https://doi.org/10.1016/j.jacc.2009.04.027
37 https://doi.org/10.1016/j.jcct.2008.05.146
38 https://doi.org/10.1016/j.jcct.2008.07.003
39 https://doi.org/10.1016/j.jcct.2008.12.010
40 https://doi.org/10.1016/j.jcct.2009.05.013
41 https://doi.org/10.1016/j.jcmg.2007.11.006
42 https://doi.org/10.1016/j.jcmg.2009.02.015
43 https://doi.org/10.1093/eurheartj/ehp571
44 https://doi.org/10.1097/01.rct.0000236422.35761.a1
45 https://doi.org/10.1097/rct.0b013e31815ea873
46 https://doi.org/10.1097/rli.0b013e31803b93cf
47 https://doi.org/10.1148/radiol.2311030191
48 https://doi.org/10.1148/radiol.2463070989
49 https://doi.org/10.1148/radiol.2482072192
50 https://doi.org/10.1148/radiol.2483072032
51 https://doi.org/10.1148/radiol.2531090065
52 https://doi.org/10.1161/01.cir.0000048965.56529.c2
53 https://doi.org/10.1161/01.cir.51.4.5
54 https://doi.org/10.1161/circulationaha.105.533471
55 https://doi.org/10.1161/circulationaha.105.602490
56 https://doi.org/10.1161/circulationaha.106.634808
57 https://doi.org/10.1161/circulationaha.109.859280
58 https://doi.org/10.1259/bjr/66519303
59 https://doi.org/10.2214/ajr.05.0216
60 https://doi.org/10.2214/ajr.07.3124
61 https://doi.org/10.2214/ajr.08.1347
62 https://doi.org/10.2214/ajr.09.3543
63 https://doi.org/10.2215/cjn.05200709
64 schema:datePublished 2011-10
65 schema:datePublishedReg 2011-10-01
66 schema:description To prospectively evaluate image quality parameters, contrast volume and radiation dose at the 100-kilovolt (kV) setting during coronary computed tomographic angiography (CCTA) on a 320-row computed tomography scanner. We enrolled 107 consecutive patients with a heart rate <65 beats per minute (bpm) undergoing prospective electrocardiogram (ECG)-triggered CCTA. Forty patients with a body mass index (BMI) <25 kg/m(2) were scanned using 100-kV tube voltage settings, while 67 patients were scanned using 120-kV protocols. Image quality was assessed by two readers unaware of patient information and scan parameters. Attenuation in the aorta and perivascular fat tissue and image noise were measured. Contrast-to-noise ratios (CNRs) and contrast material volumes were calculated. The effective radiation doses were estimated using a chest conversion coefficient (0.017). Diagnostic image quality was achieved in 98.2% of coronary segments with 100-kV CCTA and 98.6% of coronary segments with 120-kV CCTA, with no significant differences in image quality scores for each coronary segment. Vessel attenuation, image noise, and CNR were not significantly different between the 100- and 120-kV protocols. Mean contrast injection rate and mean material volume were significantly lower for the 100-kV CCTA (4.35 ± 0.28 ml/s and 53.13 ± 3.77 ml, respectively) than for the 120-kV CCTA (5.16 ± 0.21 ml/s and 62.40 ± 3.66 ml respectively; P < 0.001). The effective radiation dose was 2.12 ± 0.19 mSv for 100-kV CCTA, a reduction of 54% compared to 4.61 ± 0.82 mSv for 120-kV CCTA. A 100-kV CCTA can be implemented in patients with a BMI < 25 kg/m(2). The 100-kV setting allows significant reductions in contrast material volume and effective radiation dose while maintaining adequate diagnostic image quality.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree false
70 schema:isPartOf N4fe6a486e7b74f74bee0308e161e44b3
71 N6f3ea608740a4768b2847bc455f91434
72 sg:journal.1025429
73 schema:name 320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose
74 schema:pagination 1059-1068
75 schema:productId N380a5a4f1fba4de79ff533c77c7283dd
76 N98bb841dc1b74feab560c47eb3723875
77 Nc9f9ade32af74d56b42fcab3ac5a1aae
78 Ne7222949ffb647208d7b1b2830558960
79 Nf4d8c5dce0c946c2b4f716d33e4200b6
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042620284
81 https://doi.org/10.1007/s10554-010-9754-5
82 schema:sdDatePublished 2019-04-11T01:00
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N068648867043432f8e5f726d4fa4f67d
85 schema:url http://link.springer.com/10.1007/s10554-010-9754-5
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N028fdc01e11f4a7694286ab80a687be3 rdf:first sg:person.01027402475.85
90 rdf:rest Nd1a43901d28b4fd0b476ecb0bb2245ac
91 N068648867043432f8e5f726d4fa4f67d schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N0ca922294e4049adaafc89de0b19db02 rdf:first sg:person.01143631075.45
94 rdf:rest Nd20620e82f3e437cac7777a62d54dbe3
95 N0d5661c6a3fd44b495e3a47f92c97753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Heart Rate
97 rdf:type schema:DefinedTerm
98 N0fa9fbc1227e43d9a7d8e2de41d82906 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Radiographic Image Interpretation, Computer-Assisted
100 rdf:type schema:DefinedTerm
101 N119476a6e4504340888aa97b76a43c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Chi-Square Distribution
103 rdf:type schema:DefinedTerm
104 N2317e4b1770947abadc6bf9c60faf1cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Body Mass Index
106 rdf:type schema:DefinedTerm
107 N2a97c339b60a40b8ac027f5cedab08e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Aged
109 rdf:type schema:DefinedTerm
110 N2f32160ee5f04290ba60951407829357 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Contrast Media
112 rdf:type schema:DefinedTerm
113 N3484c4287fcd49609eaa8059a8dee261 rdf:first sg:person.01105702465.29
114 rdf:rest N68e1de7e8cef4b948049c370153e1451
115 N380a5a4f1fba4de79ff533c77c7283dd schema:name readcube_id
116 schema:value cb049bf7a0349323945efdf7e9a79a20c8fa0f76eba8c3f35c877b1bce29a59a
117 rdf:type schema:PropertyValue
118 N45d522582dde447a8c5391b1969c0910 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Coronary Angiography
120 rdf:type schema:DefinedTerm
121 N48a8d8b790bd4f869dddee678d99b070 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Male
123 rdf:type schema:DefinedTerm
124 N4ed84636aa294c3b94a5e739dafd8011 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Feasibility Studies
126 rdf:type schema:DefinedTerm
127 N4fe6a486e7b74f74bee0308e161e44b3 schema:issueNumber 7
128 rdf:type schema:PublicationIssue
129 N5972cb27bbb4413da05752d783f02343 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Coronary Artery Disease
131 rdf:type schema:DefinedTerm
132 N5ca564d0c53243188adaa41c9ebcaf37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 N68e1de7e8cef4b948049c370153e1451 rdf:first sg:person.014030237157.28
136 rdf:rest N028fdc01e11f4a7694286ab80a687be3
137 N6f3ea608740a4768b2847bc455f91434 schema:volumeNumber 27
138 rdf:type schema:PublicationVolume
139 N71896d6486654071814d9549a6118068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name China
141 rdf:type schema:DefinedTerm
142 N834d87d1b8b34198ab2390635e0ccb12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Radiation Dosage
144 rdf:type schema:DefinedTerm
145 N84e84ad583b04e78b2468f80f7d07f0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Cardiac-Gated Imaging Techniques
147 rdf:type schema:DefinedTerm
148 N98bb841dc1b74feab560c47eb3723875 schema:name nlm_unique_id
149 schema:value 100969716
150 rdf:type schema:PropertyValue
151 N9e33d427899c4edea94953e6828a2712 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Tomography, X-Ray Computed
153 rdf:type schema:DefinedTerm
154 Nb91f0ca4b001485391410f01c19e1a98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Prospective Studies
156 rdf:type schema:DefinedTerm
157 Nbecb60d9edb44c4fa42d14e6ee70edaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Middle Aged
159 rdf:type schema:DefinedTerm
160 Nc4c8e67fc8034fbeaa466b7537943dc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Predictive Value of Tests
162 rdf:type schema:DefinedTerm
163 Nc9f9ade32af74d56b42fcab3ac5a1aae schema:name pubmed_id
164 schema:value 21110100
165 rdf:type schema:PropertyValue
166 Nca1f8d4b0cf04011b8b6ad2d42ad3141 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Female
168 rdf:type schema:DefinedTerm
169 Nd1a43901d28b4fd0b476ecb0bb2245ac rdf:first sg:person.0713154075.07
170 rdf:rest N0ca922294e4049adaafc89de0b19db02
171 Nd20620e82f3e437cac7777a62d54dbe3 rdf:first sg:person.0642401716.48
172 rdf:rest rdf:nil
173 Ne7222949ffb647208d7b1b2830558960 schema:name doi
174 schema:value 10.1007/s10554-010-9754-5
175 rdf:type schema:PropertyValue
176 Nf4d8c5dce0c946c2b4f716d33e4200b6 schema:name dimensions_id
177 schema:value pub.1042620284
178 rdf:type schema:PropertyValue
179 Nfafac4b3c6f14702af7ead28fb3b401e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Electrocardiography
181 rdf:type schema:DefinedTerm
182 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
183 schema:name Physical Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
186 schema:name Other Physical Sciences
187 rdf:type schema:DefinedTerm
188 sg:journal.1025429 schema:issn 1569-5794
189 1573-0743
190 schema:name The International Journal of Cardiovascular Imaging
191 rdf:type schema:Periodical
192 sg:person.01027402475.85 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
193 schema:familyName Yan
194 schema:givenName Zixu
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027402475.85
196 rdf:type schema:Person
197 sg:person.01105702465.29 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
198 schema:familyName Zhang
199 schema:givenName Chuanchen
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105702465.29
201 rdf:type schema:Person
202 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
203 schema:familyName Yu
204 schema:givenName Wei
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
206 rdf:type schema:Person
207 sg:person.014030237157.28 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
208 schema:familyName Zhang
209 schema:givenName Zhaoqi
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
211 rdf:type schema:Person
212 sg:person.0642401716.48 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
213 schema:familyName Wang
214 schema:givenName Rui
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642401716.48
216 rdf:type schema:Person
217 sg:person.0713154075.07 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
218 schema:familyName Xu
219 schema:givenName Lei
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07
221 rdf:type schema:Person
222 sg:pub.10.1007/s00330-007-0786-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078235
223 https://doi.org/10.1007/s00330-007-0786-8
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00330-008-0966-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023746890
226 https://doi.org/10.1007/s00330-008-0966-1
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00330-009-1692-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010453428
229 https://doi.org/10.1007/s00330-009-1692-z
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s10554-008-9308-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026084106
232 https://doi.org/10.1007/s10554-008-9308-2
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s10554-009-9433-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927070
235 https://doi.org/10.1007/s10554-009-9433-6
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s10554-009-9535-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044896001
238 https://doi.org/10.1007/s10554-009-9535-1
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/nrcardio.2009.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028751002
241 https://doi.org/10.1038/nrcardio.2009.53
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1001/jama.2009.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026937699
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1001/jama.298.3.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295152
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.acra.2009.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031111467
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.ejrad.2009.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026530090
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jacc.2005.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160027
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jacc.2009.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046273989
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jcct.2008.05.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027122555
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.jcct.2008.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395017
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.jcct.2008.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035503600
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.jcct.2009.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354141
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.jcmg.2007.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026657493
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.jcmg.2009.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103166
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/eurheartj/ehp571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037926070
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1097/01.rct.0000236422.35761.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034755139
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1097/rct.0b013e31815ea873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005381836
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1097/rli.0b013e31803b93cf schema:sameAs https://app.dimensions.ai/details/publication/pub.1049206841
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1148/radiol.2311030191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045870566
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1148/radiol.2463070989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037037103
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1148/radiol.2482072192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024935051
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1148/radiol.2483072032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032386157
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1148/radiol.2531090065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040898294
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/01.cir.0000048965.56529.c2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036313717
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1161/01.cir.51.4.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063335684
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1161/circulationaha.105.533471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983112
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1161/circulationaha.105.602490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030836310
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1161/circulationaha.106.634808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001613860
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1161/circulationaha.109.859280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053471912
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1259/bjr/66519303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569910
298 rdf:type schema:CreativeWork
299 https://doi.org/10.2214/ajr.05.0216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297467
300 rdf:type schema:CreativeWork
301 https://doi.org/10.2214/ajr.07.3124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299006
302 rdf:type schema:CreativeWork
303 https://doi.org/10.2214/ajr.08.1347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299651
304 rdf:type schema:CreativeWork
305 https://doi.org/10.2214/ajr.09.3543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300529
306 rdf:type schema:CreativeWork
307 https://doi.org/10.2215/cjn.05200709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037961409
308 rdf:type schema:CreativeWork
309 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
310 schema:name Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, 100029, Chaoyang District, Beijing, People’s Republic of China
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...