Quantitative colorimetry of atherosclerotic plaque using the L*a*b* color space during angioscopy for the detection of lipid cores underneath thin ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-02-22

AUTHORS

Fumiyuki Ishibashi, Shinya Yokoyama, Kengo Miyahara, Alexandra Dabreo, Eric R. Weiss, Mark Iafrati, Masamichi Takano, Kentaro Okamatsu, Kyoichi Mizuno, Sergio Waxman

ABSTRACT

ObjectivesYellow plaques seen during angioscopy are thought to represent lipid cores underneath thin fibrous caps (LCTCs) and may be indicative of vulnerable sites. However, plaque color assessment during angioscopy has been criticized because of its qualitative nature. The purpose of the present study was to test the ability of a quantitative colorimetric system to measure yellow color intensity of atherosclerotic plaques during angioscopy and to characterize the color of LCTCs.MethodsUsing angioscopy and a quantitative colorimetry system based on the L*a*b* color space [L* describes brightness (−100 to +100), b* describes blue to yellow (−100 to +100)], the optimal conditions for measuring plaque color were determined in three flat standard color samples and five artificial plaque models in cylinder porcine carotid arteries. In 88 human tissue samples, the colorimetric characteristics of LCTCs were then evaluated.ResultsIn in-vitro samples and ex-vivo plaque models, brightness L* between 40 and 80 was determined to be optimal for acquiring b* values, and the variables unique to angioscopy in color perception did not impact b* values after adjusting for brightness L* by manipulating light or distance. In ex-vivo human tissue samples, b* value ≥23 (35.91 ± 8.13) with L* between 40 and 80 was associated with LCTCs (fibrous caps <100 μm).ConclusionsAtherosclerotic plaque color can be consistently measured during angioscopy with quantitative colorimetry. High yellow color intensity, determined by this system, was associated with LCTCs. Quantitative colorimetry during angioscopy may be used for detection of LCTCs, which may be markers of vulnerability. More... »

PAGES

679-691

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-007-9212-1

DOI

http://dx.doi.org/10.1007/s10554-007-9212-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017336855

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17318361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angioscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorimetry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics, Nonparametric", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Swine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.67033.31", 
          "name": [
            "Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishibashi", 
        "givenName": "Fumiyuki", 
        "id": "sg:person.0734777155.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734777155.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410821.e", 
          "name": [
            "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokoyama", 
        "givenName": "Shinya", 
        "id": "sg:person.010736012462.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736012462.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Archaeological Research Kyoto, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Archaeological Research Kyoto, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyahara", 
        "givenName": "Kengo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.67033.31", 
          "name": [
            "Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dabreo", 
        "givenName": "Alexandra", 
        "id": "sg:person.01000427437.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000427437.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.67033.31", 
          "name": [
            "Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Eric R.", 
        "id": "sg:person.01356013173.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356013173.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Vascular Surgery, Tufts New England Medical Center, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.67033.31", 
          "name": [
            "Department of Vascular Surgery, Tufts New England Medical Center, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iafrati", 
        "givenName": "Mark", 
        "id": "sg:person.01100171343.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100171343.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410821.e", 
          "name": [
            "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takano", 
        "givenName": "Masamichi", 
        "id": "sg:person.0611573717.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611573717.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410821.e", 
          "name": [
            "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamatsu", 
        "givenName": "Kentaro", 
        "id": "sg:person.0727046016.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046016.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410821.e", 
          "name": [
            "Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizuno", 
        "givenName": "Kyoichi", 
        "id": "sg:person.01224612517.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224612517.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lahey Clinic Medical Center, 41 Mall Road, 01805, Burlington, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.415731.5", 
          "name": [
            "Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA", 
            "Lahey Clinic Medical Center, 41 Mall Road, 01805, Burlington, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waxman", 
        "givenName": "Sergio", 
        "id": "sg:person.01312304602.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312304602.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:caim.0000021951.03735.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001059525", 
          "https://doi.org/10.1023/b:caim.0000021951.03735.60"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-02-22", 
    "datePublishedReg": "2007-02-22", 
    "description": "ObjectivesYellow plaques seen during angioscopy are thought to represent lipid cores underneath thin fibrous caps (LCTCs) and may be indicative of vulnerable sites. However, plaque color assessment during angioscopy has been criticized because of its qualitative nature. The purpose of the present study was to test the ability of a quantitative colorimetric system to measure yellow color intensity of atherosclerotic plaques during angioscopy and to characterize the color of LCTCs.MethodsUsing angioscopy and a quantitative colorimetry system based on the L*a*b* color space [L* describes brightness (\u2212100 to +100), b* describes blue to yellow (\u2212100 to +100)], the optimal conditions for measuring plaque color were determined in three flat standard color samples and five artificial plaque models in cylinder porcine carotid arteries. In 88 human tissue samples, the colorimetric characteristics of LCTCs were then evaluated.ResultsIn in-vitro samples and ex-vivo plaque models, brightness L* between 40 and 80 was determined to be optimal for acquiring b* values, and the variables unique to angioscopy in color perception did not impact b* values after adjusting for brightness L* by manipulating light or distance. In ex-vivo human tissue samples, b* value \u226523 (35.91\u00a0\u00b1\u00a08.13) with L* between 40 and 80 was associated with LCTCs (fibrous caps <100\u00a0\u03bcm).ConclusionsAtherosclerotic plaque color can be consistently measured during angioscopy with quantitative colorimetry. High yellow color intensity, determined by this system, was associated with LCTCs. Quantitative colorimetry during angioscopy may be used for detection of LCTCs, which may be markers of vulnerability.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10554-007-9212-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "thin fibrous cap", 
      "atherosclerotic plaques", 
      "fibrous cap", 
      "human tissue samples", 
      "plaque color", 
      "plaque model", 
      "tissue samples", 
      "lipid core", 
      "marker of vulnerability", 
      "carotid artery", 
      "angioscopy", 
      "porcine carotid arteries", 
      "quantitative colorimetry", 
      "plaques", 
      "yellow color intensity", 
      "present study", 
      "vulnerable sites", 
      "artery", 
      "ResultsIn", 
      "color assessment", 
      "markers", 
      "samples", 
      "assessment", 
      "color perception", 
      "study", 
      "detection", 
      "colorimetry", 
      "LCTC", 
      "values", 
      "purpose", 
      "cap", 
      "ability", 
      "color intensity", 
      "intensity", 
      "sites", 
      "variables", 
      "perception", 
      "vulnerability", 
      "model", 
      "characteristics", 
      "system", 
      "qualitative nature", 
      "conditions", 
      "standard color samples", 
      "color", 
      "light", 
      "nature", 
      "colorimetric system", 
      "optimal conditions", 
      "space", 
      "distance", 
      "core", 
      "color samples", 
      "brightness L", 
      "color space", 
      "colorimetric characteristics", 
      "colorimetry system"
    ], 
    "name": "Quantitative colorimetry of atherosclerotic plaque using the L*a*b* color space during angioscopy for the detection of lipid cores underneath thin fibrous caps", 
    "pagination": "679-691", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017336855"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-007-9212-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17318361"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-007-9212-1", 
      "https://app.dimensions.ai/details/publication/pub.1017336855"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_437.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10554-007-9212-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-007-9212-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-007-9212-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-007-9212-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-007-9212-1'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      94 URIs      85 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-007-9212-1 schema:about N036eadeb3bff488aae1b9ffada8cd524
2 N176a57f24a154120908ea8b84b99d59c
3 N1e1870c528db498d93f62c32e832e83f
4 N2d31dd2cce8a44a799dde506741353d2
5 N344b0c0a82354c9294a4028b154c816e
6 N50fa6b6ee2fd4a718a90459dd9003418
7 N52689ab3a7bc419fbc6e07da20501993
8 N7ed8713c2c25417da676bf5dcf0a3549
9 Nb0ebc3f8ffcc45f498b53549b7a54256
10 Nd61bb7bd946c4e0290fe81fd580bcddc
11 Nfcbf497d46da462ab20e02b084ca289f
12 anzsrc-for:11
13 anzsrc-for:1102
14 schema:author N1b1516d9dcca4e6bad79321d87046a38
15 schema:citation sg:pub.10.1023/b:caim.0000021951.03735.60
16 schema:datePublished 2007-02-22
17 schema:datePublishedReg 2007-02-22
18 schema:description ObjectivesYellow plaques seen during angioscopy are thought to represent lipid cores underneath thin fibrous caps (LCTCs) and may be indicative of vulnerable sites. However, plaque color assessment during angioscopy has been criticized because of its qualitative nature. The purpose of the present study was to test the ability of a quantitative colorimetric system to measure yellow color intensity of atherosclerotic plaques during angioscopy and to characterize the color of LCTCs.MethodsUsing angioscopy and a quantitative colorimetry system based on the L*a*b* color space [L* describes brightness (−100 to +100), b* describes blue to yellow (−100 to +100)], the optimal conditions for measuring plaque color were determined in three flat standard color samples and five artificial plaque models in cylinder porcine carotid arteries. In 88 human tissue samples, the colorimetric characteristics of LCTCs were then evaluated.ResultsIn in-vitro samples and ex-vivo plaque models, brightness L* between 40 and 80 was determined to be optimal for acquiring b* values, and the variables unique to angioscopy in color perception did not impact b* values after adjusting for brightness L* by manipulating light or distance. In ex-vivo human tissue samples, b* value ≥23 (35.91 ± 8.13) with L* between 40 and 80 was associated with LCTCs (fibrous caps <100 μm).ConclusionsAtherosclerotic plaque color can be consistently measured during angioscopy with quantitative colorimetry. High yellow color intensity, determined by this system, was associated with LCTCs. Quantitative colorimetry during angioscopy may be used for detection of LCTCs, which may be markers of vulnerability.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N1cfab15e4d724c7d87d22d5bb7d7ccdd
22 N9d15bc21388f493882490d468240a48d
23 sg:journal.1025429
24 schema:keywords LCTC
25 ResultsIn
26 ability
27 angioscopy
28 artery
29 assessment
30 atherosclerotic plaques
31 brightness L
32 cap
33 carotid artery
34 characteristics
35 color
36 color assessment
37 color intensity
38 color perception
39 color samples
40 color space
41 colorimetric characteristics
42 colorimetric system
43 colorimetry
44 colorimetry system
45 conditions
46 core
47 detection
48 distance
49 fibrous cap
50 human tissue samples
51 intensity
52 light
53 lipid core
54 marker of vulnerability
55 markers
56 model
57 nature
58 optimal conditions
59 perception
60 plaque color
61 plaque model
62 plaques
63 porcine carotid arteries
64 present study
65 purpose
66 qualitative nature
67 quantitative colorimetry
68 samples
69 sites
70 space
71 standard color samples
72 study
73 system
74 thin fibrous cap
75 tissue samples
76 values
77 variables
78 vulnerability
79 vulnerable sites
80 yellow color intensity
81 schema:name Quantitative colorimetry of atherosclerotic plaque using the L*a*b* color space during angioscopy for the detection of lipid cores underneath thin fibrous caps
82 schema:pagination 679-691
83 schema:productId N1c85beaf88d9497ba3f15f0ff2990ffc
84 N3b1f1e79084f431f852015277760c96f
85 N892c991619d24289a458653380749654
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017336855
87 https://doi.org/10.1007/s10554-007-9212-1
88 schema:sdDatePublished 2022-11-24T20:52
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N1bebc3a5854c4b0bb48b13b76ce86cfa
91 schema:url https://doi.org/10.1007/s10554-007-9212-1
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N036eadeb3bff488aae1b9ffada8cd524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Animals
97 rdf:type schema:DefinedTerm
98 N176a57f24a154120908ea8b84b99d59c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name In Vitro Techniques
100 rdf:type schema:DefinedTerm
101 N1b1516d9dcca4e6bad79321d87046a38 rdf:first sg:person.0734777155.06
102 rdf:rest N46cd69160d4945a3a32e0596d951ec82
103 N1bebc3a5854c4b0bb48b13b76ce86cfa schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N1c85beaf88d9497ba3f15f0ff2990ffc schema:name pubmed_id
106 schema:value 17318361
107 rdf:type schema:PropertyValue
108 N1cfab15e4d724c7d87d22d5bb7d7ccdd schema:issueNumber 6
109 rdf:type schema:PublicationIssue
110 N1e1870c528db498d93f62c32e832e83f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Coronary Vessels
112 rdf:type schema:DefinedTerm
113 N2d31dd2cce8a44a799dde506741353d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Statistics, Nonparametric
115 rdf:type schema:DefinedTerm
116 N344b0c0a82354c9294a4028b154c816e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Swine
118 rdf:type schema:DefinedTerm
119 N3b1f1e79084f431f852015277760c96f schema:name dimensions_id
120 schema:value pub.1017336855
121 rdf:type schema:PropertyValue
122 N46cd69160d4945a3a32e0596d951ec82 rdf:first sg:person.010736012462.52
123 rdf:rest Ne953d80d5d6042bca0527c5a9fc06944
124 N50fa6b6ee2fd4a718a90459dd9003418 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Lipids
126 rdf:type schema:DefinedTerm
127 N52689ab3a7bc419fbc6e07da20501993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 N5c670289bb3345b98e36a5060077b4e2 rdf:first sg:person.01312304602.88
131 rdf:rest rdf:nil
132 N7ed8713c2c25417da676bf5dcf0a3549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Reproducibility of Results
134 rdf:type schema:DefinedTerm
135 N892c991619d24289a458653380749654 schema:name doi
136 schema:value 10.1007/s10554-007-9212-1
137 rdf:type schema:PropertyValue
138 N9d15bc21388f493882490d468240a48d schema:volumeNumber 23
139 rdf:type schema:PublicationVolume
140 Naed2256dafeb47879485d71fdf4926ff rdf:first sg:person.0727046016.53
141 rdf:rest Ne78b480c278049219e67376a0639339a
142 Nb0ebc3f8ffcc45f498b53549b7a54256 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Atherosclerosis
144 rdf:type schema:DefinedTerm
145 Nc2f3005011394314b3154cd871b2565a rdf:first sg:person.0611573717.76
146 rdf:rest Naed2256dafeb47879485d71fdf4926ff
147 Nc533f4e88ce548c59392264a99b64330 schema:affiliation grid-institutes:None
148 schema:familyName Miyahara
149 schema:givenName Kengo
150 rdf:type schema:Person
151 Nd30e3560f9b240b294c03e11617d99b7 rdf:first sg:person.01100171343.20
152 rdf:rest Nc2f3005011394314b3154cd871b2565a
153 Nd379f0cb83094fdb9ace390079abd8f3 rdf:first sg:person.01000427437.80
154 rdf:rest Nfc452df63a46445ab9dab94cfbc64a0d
155 Nd61bb7bd946c4e0290fe81fd580bcddc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Colorimetry
157 rdf:type schema:DefinedTerm
158 Ne78b480c278049219e67376a0639339a rdf:first sg:person.01224612517.39
159 rdf:rest N5c670289bb3345b98e36a5060077b4e2
160 Ne953d80d5d6042bca0527c5a9fc06944 rdf:first Nc533f4e88ce548c59392264a99b64330
161 rdf:rest Nd379f0cb83094fdb9ace390079abd8f3
162 Nfc452df63a46445ab9dab94cfbc64a0d rdf:first sg:person.01356013173.52
163 rdf:rest Nd30e3560f9b240b294c03e11617d99b7
164 Nfcbf497d46da462ab20e02b084ca289f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Angioscopy
166 rdf:type schema:DefinedTerm
167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
168 schema:name Medical and Health Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
171 schema:name Cardiorespiratory Medicine and Haematology
172 rdf:type schema:DefinedTerm
173 sg:journal.1025429 schema:issn 1569-5794
174 1573-0743
175 schema:name The International Journal of Cardiovascular Imaging
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01000427437.80 schema:affiliation grid-institutes:grid.67033.31
179 schema:familyName Dabreo
180 schema:givenName Alexandra
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000427437.80
182 rdf:type schema:Person
183 sg:person.010736012462.52 schema:affiliation grid-institutes:grid.410821.e
184 schema:familyName Yokoyama
185 schema:givenName Shinya
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736012462.52
187 rdf:type schema:Person
188 sg:person.01100171343.20 schema:affiliation grid-institutes:grid.67033.31
189 schema:familyName Iafrati
190 schema:givenName Mark
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100171343.20
192 rdf:type schema:Person
193 sg:person.01224612517.39 schema:affiliation grid-institutes:grid.410821.e
194 schema:familyName Mizuno
195 schema:givenName Kyoichi
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224612517.39
197 rdf:type schema:Person
198 sg:person.01312304602.88 schema:affiliation grid-institutes:grid.415731.5
199 schema:familyName Waxman
200 schema:givenName Sergio
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312304602.88
202 rdf:type schema:Person
203 sg:person.01356013173.52 schema:affiliation grid-institutes:grid.67033.31
204 schema:familyName Weiss
205 schema:givenName Eric R.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356013173.52
207 rdf:type schema:Person
208 sg:person.0611573717.76 schema:affiliation grid-institutes:grid.410821.e
209 schema:familyName Takano
210 schema:givenName Masamichi
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611573717.76
212 rdf:type schema:Person
213 sg:person.0727046016.53 schema:affiliation grid-institutes:grid.410821.e
214 schema:familyName Okamatsu
215 schema:givenName Kentaro
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046016.53
217 rdf:type schema:Person
218 sg:person.0734777155.06 schema:affiliation grid-institutes:grid.67033.31
219 schema:familyName Ishibashi
220 schema:givenName Fumiyuki
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734777155.06
222 rdf:type schema:Person
223 sg:pub.10.1023/b:caim.0000021951.03735.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001059525
224 https://doi.org/10.1023/b:caim.0000021951.03735.60
225 rdf:type schema:CreativeWork
226 grid-institutes:None schema:alternateName Institute of Archaeological Research Kyoto, Kyoto, Japan
227 schema:name Institute of Archaeological Research Kyoto, Kyoto, Japan
228 rdf:type schema:Organization
229 grid-institutes:grid.410821.e schema:alternateName Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan
230 schema:name Department of Internal Medicine, Chiba-Hokusoh Hospital, Nippon Medical School, Chiba, Japan
231 rdf:type schema:Organization
232 grid-institutes:grid.415731.5 schema:alternateName Lahey Clinic Medical Center, 41 Mall Road, 01805, Burlington, MA, USA
233 schema:name Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA
234 Lahey Clinic Medical Center, 41 Mall Road, 01805, Burlington, MA, USA
235 rdf:type schema:Organization
236 grid-institutes:grid.67033.31 schema:alternateName Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA
237 Department of Vascular Surgery, Tufts New England Medical Center, Boston, MA, USA
238 schema:name Center for Translational Cardiovascular Research, Tufts New England Medical Center, Boston, MA, USA
239 Department of Vascular Surgery, Tufts New England Medical Center, Boston, MA, USA
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...