Association of high-density lipoprotein levels and carotid atherosclerotic plaque characteristics by magnetic resonance imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-06

AUTHORS

Binh An P. Phan, Baocheng Chu, Nayak Polissar, Thomas S. Hatsukami, Chun Yuan, Xue-Qiao Zhao

ABSTRACT

A low level of high-density lipoprotein cholesterol (HDL-C) is a risk factor for atherosclerotic disease. Magnetic resonance imaging (MRI) can provide detailed information on carotid atherosclerotic plaque size and composition. The purpose of this study was to correlate HDL levels with carotid plaque burden and composition by MRI. Thirty-four patients with coronary artery disease (CAD) receiving simvastatin plus niacin or placebo for both drugs for three years were randomly selected to undergo MRI of carotid arteries. Atherosclerotic plaque wall volumes (WVs) and plaque components including lipid rich/necrotic core (LR/NC), calcium, fibrous tissue, and loose matrix were measured. Mean WV or atherosclerotic burden was significantly associated with total HDL-C levels (r = -0.39, P = 0.02), HDL(2) (r = -0.36, P = 0.03), HDL(3) (r = -0.34, P = 0.04), and LDL/HDL ratio (r = 0.42, P = 0.02). Plaque lipid composition or LR/NC was significantly associated with HDL(3) (r = -0.68, P = 0.02). Patients with low HDL levels ( 35 mg/dL. Among CAD patients, low HDL-C levels were significantly associated with increased carotid atherosclerotic plaque burden and lipid content by MRI. More... »

PAGES

337-342

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10554-006-9175-7

DOI

http://dx.doi.org/10.1007/s10554-006-9175-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011048640

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17086362


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypolipidemic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipoproteins, HDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Niacin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Simvastatin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Division of Cardiology, Department of Medicine, University of Washington, 1914 N 34th Street, Suite 105, 98103-8771, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phan", 
        "givenName": "Binh An P.", 
        "id": "sg:person.0723601017.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723601017.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Baocheng", 
        "id": "sg:person.01264250523.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264250523.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "The Mountain-Whisper-Light Statistical Consulting, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polissar", 
        "givenName": "Nayak", 
        "id": "sg:person.01334331430.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334331430.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VA Puget Sound Health Care System", 
          "id": "https://www.grid.ac/institutes/grid.413919.7", 
          "name": [
            "Department of Surgery, University of Washington and VA Puget Sound Health Care System, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatsukami", 
        "givenName": "Thomas S.", 
        "id": "sg:person.013351427457.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Division of Cardiology, Department of Medicine, University of Washington, 1914 N 34th Street, Suite 105, 98103-8771, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xue-Qiao", 
        "id": "sg:person.016153744457.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153744457.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.res.0000018422.31717.ee", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003760387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.79.1.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006732187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880060121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008407196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000028591.44554.f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0195-69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015774059", 
          "https://doi.org/10.1038/nm0195-69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc4401.098467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018459478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.100.6.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019807452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hq1001.098463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022808350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-004-7019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026125981", 
          "https://doi.org/10.1007/s10554-004-7019-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-004-7019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026125981", 
          "https://doi.org/10.1007/s10554-004-7019-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.87.6.1781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028812751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45468-3_94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030251267", 
          "https://doi.org/10.1007/3-540-45468-3_94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45468-3_94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030251267", 
          "https://doi.org/10.1007/3-540-45468-3_94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1993.03500230097036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034726290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.104.3.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041984558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.98.24.2666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043092275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.290.17.2292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045463396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa011090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(83)90649-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047218452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hs0901.095639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049246787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.269.23.3015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054155611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.17.8.1496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063334770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.94.5.932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063337449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.28.1.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063342133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hq0202.104848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063346258"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06", 
    "datePublishedReg": "2007-06-01", 
    "description": "A low level of high-density lipoprotein cholesterol (HDL-C) is a risk factor for atherosclerotic disease. Magnetic resonance imaging (MRI) can provide detailed information on carotid atherosclerotic plaque size and composition. The purpose of this study was to correlate HDL levels with carotid plaque burden and composition by MRI. Thirty-four patients with coronary artery disease (CAD) receiving simvastatin plus niacin or placebo for both drugs for three years were randomly selected to undergo MRI of carotid arteries. Atherosclerotic plaque wall volumes (WVs) and plaque components including lipid rich/necrotic core (LR/NC), calcium, fibrous tissue, and loose matrix were measured. Mean WV or atherosclerotic burden was significantly associated with total HDL-C levels (r = -0.39, P = 0.02), HDL(2) (r = -0.36, P = 0.03), HDL(3) (r = -0.34, P = 0.04), and LDL/HDL ratio (r = 0.42, P = 0.02). Plaque lipid composition or LR/NC was significantly associated with HDL(3) (r = -0.68, P = 0.02). Patients with low HDL levels ( 35 mg/dL. Among CAD patients, low HDL-C levels were significantly associated with increased carotid atherosclerotic plaque burden and lipid content by MRI.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10554-006-9175-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1025429", 
        "issn": [
          "1569-5794", 
          "1573-0743"
        ], 
        "name": "The International Journal of Cardiovascular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Association of high-density lipoprotein levels and carotid atherosclerotic plaque characteristics by magnetic resonance imaging", 
    "pagination": "337-342", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "34a3f4f979ccd22efab894c98cc1be2bd5527dbf3ba671d0e78aae547673905a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17086362"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100969716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10554-006-9175-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011048640"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10554-006-9175-7", 
      "https://app.dimensions.ai/details/publication/pub.1011048640"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13093_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10554-006-9175-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10554-006-9175-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10554-006-9175-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10554-006-9175-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10554-006-9175-7'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      67 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10554-006-9175-7 schema:about N09d48c2f15f947e28965c1ed1f8afb6b
2 N0c1afc67341a48778ebcfe604dc0d35a
3 N368576917e9e46d6b67dc40be7f0c469
4 N3c1a8c04c7e04ab085646db78e405f46
5 N47f270f1b4954a7c82314f042935e3b1
6 N990cb29ac14a4406a289664dbeac57b2
7 Na1c97edfce444b97ada0292fd642dc69
8 Na1d47afb279a4cbfbc7a6c4c0d7f0a76
9 Na2eb0677f3314cd4bce1f4acd639de36
10 Nacedc721496f401f9c21f1a86491b684
11 Nd44a3fc23fa1430d9ee37ee0e4e2c0b7
12 Nd6485b2e6320421eabe8a792e6033eb4
13 Ndbffe0e1d0134b049f8b3d5bce32a638
14 Ne4b800eb7f2a410ea38aad4d31c6f488
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N63d76df9f24f4ac8bcf9d1073253f058
18 schema:citation sg:pub.10.1007/3-540-45468-3_94
19 sg:pub.10.1007/s10554-004-7019-x
20 sg:pub.10.1038/nm0195-69
21 https://doi.org/10.1001/jama.1993.03500230097036
22 https://doi.org/10.1001/jama.269.23.3015
23 https://doi.org/10.1001/jama.290.17.2292
24 https://doi.org/10.1002/jmri.1880060121
25 https://doi.org/10.1016/0002-9149(83)90649-5
26 https://doi.org/10.1056/nejmoa011090
27 https://doi.org/10.1161/01.atv.0000149867.61851.31
28 https://doi.org/10.1161/01.atv.17.8.1496
29 https://doi.org/10.1161/01.cir.0000028591.44554.f9
30 https://doi.org/10.1161/01.cir.100.6.576
31 https://doi.org/10.1161/01.cir.104.3.249
32 https://doi.org/10.1161/01.cir.79.1.8
33 https://doi.org/10.1161/01.cir.87.6.1781
34 https://doi.org/10.1161/01.cir.94.5.932
35 https://doi.org/10.1161/01.cir.98.24.2666
36 https://doi.org/10.1161/01.res.0000018422.31717.ee
37 https://doi.org/10.1161/01.str.28.1.83
38 https://doi.org/10.1161/hc4401.098467
39 https://doi.org/10.1161/hq0202.104848
40 https://doi.org/10.1161/hq1001.098463
41 https://doi.org/10.1161/hs0901.095639
42 schema:datePublished 2007-06
43 schema:datePublishedReg 2007-06-01
44 schema:description A low level of high-density lipoprotein cholesterol (HDL-C) is a risk factor for atherosclerotic disease. Magnetic resonance imaging (MRI) can provide detailed information on carotid atherosclerotic plaque size and composition. The purpose of this study was to correlate HDL levels with carotid plaque burden and composition by MRI. Thirty-four patients with coronary artery disease (CAD) receiving simvastatin plus niacin or placebo for both drugs for three years were randomly selected to undergo MRI of carotid arteries. Atherosclerotic plaque wall volumes (WVs) and plaque components including lipid rich/necrotic core (LR/NC), calcium, fibrous tissue, and loose matrix were measured. Mean WV or atherosclerotic burden was significantly associated with total HDL-C levels (r = -0.39, P = 0.02), HDL(2) (r = -0.36, P = 0.03), HDL(3) (r = -0.34, P = 0.04), and LDL/HDL ratio (r = 0.42, P = 0.02). Plaque lipid composition or LR/NC was significantly associated with HDL(3) (r = -0.68, P = 0.02). Patients with low HDL levels (<or=35 mg/dL) had increased WV (97 +/- 23 vs. 81 +/- 19 mm(3), P = 0.05) compared with patients with HDL levels > 35 mg/dL. Among CAD patients, low HDL-C levels were significantly associated with increased carotid atherosclerotic plaque burden and lipid content by MRI.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N0eed1dad6e43405c9d23a0e4236d2c82
49 Nacaf30d8768b49ca99b793670824f298
50 sg:journal.1025429
51 schema:name Association of high-density lipoprotein levels and carotid atherosclerotic plaque characteristics by magnetic resonance imaging
52 schema:pagination 337-342
53 schema:productId Nac76f387336645058fe1c43686960279
54 Nbbd3427e03dc4d2ebacb29d56d63b5ed
55 Ne0bc82b1ded342908543ed0965da84a6
56 Ne3179bc0ddfe4930a18c791c0968787c
57 Nfd0545c7cbf249d88adbd44a459ac0fe
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011048640
59 https://doi.org/10.1007/s10554-006-9175-7
60 schema:sdDatePublished 2019-04-11T14:30
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nf59ef1bd45e04840a141db3fe2b0f04f
63 schema:url http://link.springer.com/10.1007%2Fs10554-006-9175-7
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N09d48c2f15f947e28965c1ed1f8afb6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Middle Aged
69 rdf:type schema:DefinedTerm
70 N0c1afc67341a48778ebcfe604dc0d35a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Atherosclerosis
72 rdf:type schema:DefinedTerm
73 N0eed1dad6e43405c9d23a0e4236d2c82 schema:volumeNumber 23
74 rdf:type schema:PublicationVolume
75 N273bfe96730d46da9fbb5d2d33ed8aff rdf:first sg:person.01264250523.91
76 rdf:rest Nec157f4e28f445318f9a8794f20cf237
77 N368576917e9e46d6b67dc40be7f0c469 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Chi-Square Distribution
79 rdf:type schema:DefinedTerm
80 N3c1a8c04c7e04ab085646db78e405f46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Female
82 rdf:type schema:DefinedTerm
83 N40ca0afed0e646d3a37ee7f0d3efeba5 rdf:first sg:person.013351427457.97
84 rdf:rest N72069c1556ed41a78e7c80955b46bfa9
85 N47f270f1b4954a7c82314f042935e3b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Simvastatin
87 rdf:type schema:DefinedTerm
88 N63d76df9f24f4ac8bcf9d1073253f058 rdf:first sg:person.0723601017.90
89 rdf:rest N273bfe96730d46da9fbb5d2d33ed8aff
90 N72069c1556ed41a78e7c80955b46bfa9 rdf:first sg:person.011712252247.13
91 rdf:rest N85a3fd885b984422abe8592fe02e78a0
92 N85a3fd885b984422abe8592fe02e78a0 rdf:first sg:person.016153744457.55
93 rdf:rest rdf:nil
94 N990cb29ac14a4406a289664dbeac57b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Coronary Angiography
96 rdf:type schema:DefinedTerm
97 Na1c97edfce444b97ada0292fd642dc69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Lipoproteins, HDL
99 rdf:type schema:DefinedTerm
100 Na1d47afb279a4cbfbc7a6c4c0d7f0a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Niacin
102 rdf:type schema:DefinedTerm
103 Na2eb0677f3314cd4bce1f4acd639de36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Carotid Artery Diseases
105 rdf:type schema:DefinedTerm
106 Nac76f387336645058fe1c43686960279 schema:name nlm_unique_id
107 schema:value 100969716
108 rdf:type schema:PropertyValue
109 Nacaf30d8768b49ca99b793670824f298 schema:issueNumber 3
110 rdf:type schema:PublicationIssue
111 Nacedc721496f401f9c21f1a86491b684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Adult
113 rdf:type schema:DefinedTerm
114 Nbbd3427e03dc4d2ebacb29d56d63b5ed schema:name readcube_id
115 schema:value 34a3f4f979ccd22efab894c98cc1be2bd5527dbf3ba671d0e78aae547673905a
116 rdf:type schema:PropertyValue
117 Nd44a3fc23fa1430d9ee37ee0e4e2c0b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Male
119 rdf:type schema:DefinedTerm
120 Nd6485b2e6320421eabe8a792e6033eb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Ndbffe0e1d0134b049f8b3d5bce32a638 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Magnetic Resonance Imaging
125 rdf:type schema:DefinedTerm
126 Ne0bc82b1ded342908543ed0965da84a6 schema:name dimensions_id
127 schema:value pub.1011048640
128 rdf:type schema:PropertyValue
129 Ne3179bc0ddfe4930a18c791c0968787c schema:name pubmed_id
130 schema:value 17086362
131 rdf:type schema:PropertyValue
132 Ne4b800eb7f2a410ea38aad4d31c6f488 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Hypolipidemic Agents
134 rdf:type schema:DefinedTerm
135 Nec157f4e28f445318f9a8794f20cf237 rdf:first sg:person.01334331430.33
136 rdf:rest N40ca0afed0e646d3a37ee7f0d3efeba5
137 Nf59ef1bd45e04840a141db3fe2b0f04f schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Nfa66ab4d15ef4f93b211f2620089901c schema:name The Mountain-Whisper-Light Statistical Consulting, Seattle, WA, USA
140 rdf:type schema:Organization
141 Nfd0545c7cbf249d88adbd44a459ac0fe schema:name doi
142 schema:value 10.1007/s10554-006-9175-7
143 rdf:type schema:PropertyValue
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
148 schema:name Cardiorespiratory Medicine and Haematology
149 rdf:type schema:DefinedTerm
150 sg:journal.1025429 schema:issn 1569-5794
151 1573-0743
152 schema:name The International Journal of Cardiovascular Imaging
153 rdf:type schema:Periodical
154 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
155 schema:familyName Yuan
156 schema:givenName Chun
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
158 rdf:type schema:Person
159 sg:person.01264250523.91 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
160 schema:familyName Chu
161 schema:givenName Baocheng
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264250523.91
163 rdf:type schema:Person
164 sg:person.01334331430.33 schema:affiliation Nfa66ab4d15ef4f93b211f2620089901c
165 schema:familyName Polissar
166 schema:givenName Nayak
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334331430.33
168 rdf:type schema:Person
169 sg:person.013351427457.97 schema:affiliation https://www.grid.ac/institutes/grid.413919.7
170 schema:familyName Hatsukami
171 schema:givenName Thomas S.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97
173 rdf:type schema:Person
174 sg:person.016153744457.55 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
175 schema:familyName Zhao
176 schema:givenName Xue-Qiao
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153744457.55
178 rdf:type schema:Person
179 sg:person.0723601017.90 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
180 schema:familyName Phan
181 schema:givenName Binh An P.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723601017.90
183 rdf:type schema:Person
184 sg:pub.10.1007/3-540-45468-3_94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030251267
185 https://doi.org/10.1007/3-540-45468-3_94
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s10554-004-7019-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026125981
188 https://doi.org/10.1007/s10554-004-7019-x
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nm0195-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015774059
191 https://doi.org/10.1038/nm0195-69
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1001/jama.1993.03500230097036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034726290
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1001/jama.269.23.3015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054155611
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1001/jama.290.17.2292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045463396
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/jmri.1880060121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008407196
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/0002-9149(83)90649-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047218452
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1056/nejmoa011090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333106
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1161/01.atv.0000149867.61851.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036106235
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1161/01.atv.17.8.1496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063334770
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1161/01.cir.0000028591.44554.f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264013
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1161/01.cir.100.6.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019807452
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1161/01.cir.104.3.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041984558
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1161/01.cir.79.1.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006732187
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1161/01.cir.87.6.1781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028812751
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1161/01.cir.94.5.932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063337449
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1161/01.cir.98.24.2666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043092275
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1161/01.res.0000018422.31717.ee schema:sameAs https://app.dimensions.ai/details/publication/pub.1003760387
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1161/01.str.28.1.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063342133
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1161/hc4401.098467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018459478
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1161/hq0202.104848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063346258
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1161/hq1001.098463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022808350
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1161/hs0901.095639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049246787
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
236 schema:name Department of Radiology, University of Washington, Seattle, WA, USA
237 Division of Cardiology, Department of Medicine, University of Washington, 1914 N 34th Street, Suite 105, 98103-8771, Seattle, WA, USA
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.413919.7 schema:alternateName VA Puget Sound Health Care System
240 schema:name Department of Surgery, University of Washington and VA Puget Sound Health Care System, Seattle, WA, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...