Predictors of breast cancer mortality among white and black women in large United States cities: an ecologic study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-17

AUTHORS

Bijou R. Hunt, Abigail Silva, Derrick Lock, Marc Hurlbert

ABSTRACT

PurposeWe employed a city-level ecologic analysis to assess predictors of race-specific (black and white) breast cancer mortality rates.MethodsWe used data from the National Center for Health Statistics and the US Census Bureau to calculate 2010–2014 race-specific breast cancer mortality rates (BCMR) for 47 of the largest US cities. Data on potential city-level predictors (e.g., socioeconomic factors, health care resources) of race-specific BCMR were obtained from various publicly available datasets. We constructed race-specific multivariable negative binomial regression models to estimate rate ratios (RR) and 95% confidence intervals (CIs).ResultsPredictors of the white BCMR included white/black differences in education (RR 0.95; CI 0.91–0.99), number of religious congregations (RR 0.87; CI 0.77–0.97), and number of Medicare primary care physicians (RR 1.15; CI 1.04–1.28). Predictors of the black rate included white/black differences in household income (RR 1.03; CI 1.01–1.05), number of mammography facilities (RR 1.07; CI 1.03–1.12), and mammogram use (RR 0.93; CI 0.89–0.97).ConclusionsOur ecologic analysis found that predictors of breast cancer mortality differ for the black and white rate. The results of this analysis could help inform interventions at the local level. More... »

PAGES

149-164

References to SciGraph publications

  • 2008-08. Technological innovation and inequality in health in DEMOGRAPHY
  • 2016-06-02. Racial disparities in individual breast cancer outcomes by hormone-receptor subtype, area-level socio-economic status and healthcare resources in BREAST CANCER RESEARCH AND TREATMENT
  • 2013-11-11. Neighborhood socio-economic disadvantage and race/ethnicity as predictors of breast cancer stage at diagnosis in BMC PUBLIC HEALTH
  • 2009-08-18. A community effort to reduce the black/white breast cancer mortality disparity in Chicago in CANCER CAUSES & CONTROL
  • 2016-07-18. The impact of patient navigation on the delivery of diagnostic breast cancer care in the National Patient Navigation Research Program: a prospective meta-analysis in BREAST CANCER RESEARCH AND TREATMENT
  • 2015-10-14. Disparities in breast cancer care and research: report from a Breast Cancer Research Foundation sponsored workshop, 9–10 October 2014 in NPJ BREAST CANCER
  • 2016-12-06. Racial Disparities in Heart Disease Mortality in the 50 Largest U.S. Cities in JOURNAL OF RACIAL AND ETHNIC HEALTH DISPARITIES
  • 2014-02-15. Racial Disparities in Diabetes Mortality in the 50 Most Populous US Cities in JOURNAL OF URBAN HEALTH
  • 2018-06-19. Mapping hot spots of breast cancer mortality in the United States: place matters for Blacks and Hispanics in CANCER CAUSES & CONTROL
  • 2013-04-26. Mammogram image quality as a potential contributor to disparities in breast cancer stage at diagnosis: an observational study in BMC CANCER
  • 2015-06-14. Intersection of Race/Ethnicity and Socioeconomic Status in Mortality After Breast Cancer in JOURNAL OF COMMUNITY HEALTH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10552-018-1125-x

    DOI

    http://dx.doi.org/10.1007/s10552-018-1125-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111498236

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30656540


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "African Americans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cities", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "European Continental Ancestry Group", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mammography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Medicare", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Socioeconomic Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United States", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sinai Urban Health Institute, Sinai Health System, 1500 S. Fairfield Ave., Room K438, 60608, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.415931.b", 
              "name": [
                "Sinai Urban Health Institute, Sinai Health System, 1500 S. Fairfield Ave., Room K438, 60608, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hunt", 
            "givenName": "Bijou R.", 
            "id": "sg:person.01127644605.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127644605.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, 5000 S. Fifth Avenue, 60141, Hines, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.280893.8", 
              "name": [
                "Department of Public Health Sciences, Loyola University Stritch School of Medicine, 2160 S. First Avenue, 60153, Maywood, IL, USA", 
                "Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, 5000 S. Fifth Avenue, 60141, Hines, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silva", 
            "givenName": "Abigail", 
            "id": "sg:person.01054012340.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054012340.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, 60064, North Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.262641.5", 
              "name": [
                "Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, 60064, North Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lock", 
            "givenName": "Derrick", 
            "id": "sg:person.010303441667.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010303441667.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Breast Cancer Research Foundation, 60 East 56th Street, 8th Floor, 10022, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.427821.a", 
              "name": [
                "Breast Cancer Research Foundation, 60 East 56th Street, 8th Floor, 10022, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hurlbert", 
            "givenName": "Marc", 
            "id": "sg:person.01135657313.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135657313.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10549-016-3840-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018418456", 
              "https://doi.org/10.1007/s10549-016-3840-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10900-015-0052-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034947248", 
              "https://doi.org/10.1007/s10900-015-0052-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjbcancer.2015.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036215464", 
              "https://doi.org/10.1038/npjbcancer.2015.13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11524-013-9861-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033022903", 
              "https://doi.org/10.1007/s11524-013-9861-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40615-016-0300-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034685325", 
              "https://doi.org/10.1007/s40615-016-0300-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-016-3887-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006674793", 
              "https://doi.org/10.1007/s10549-016-3887-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10552-009-9419-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006412959", 
              "https://doi.org/10.1007/s10552-009-9419-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-13-208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020534598", 
              "https://doi.org/10.1186/1471-2407-13-208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1353/dem.0.0017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042281591", 
              "https://doi.org/10.1353/dem.0.0017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2458-13-1061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014894769", 
              "https://doi.org/10.1186/1471-2458-13-1061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10552-018-1051-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104994311", 
              "https://doi.org/10.1007/s10552-018-1051-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-17", 
        "datePublishedReg": "2019-01-17", 
        "description": "PurposeWe employed a city-level ecologic analysis to assess predictors of race-specific (black and white) breast cancer mortality rates.MethodsWe used data from the National Center for Health Statistics and the US Census Bureau to calculate 2010\u20132014 race-specific breast cancer mortality rates (BCMR) for 47 of the largest US cities. Data on potential city-level predictors (e.g., socioeconomic factors, health care resources) of race-specific BCMR were obtained from various publicly available datasets. We constructed race-specific multivariable negative binomial regression models to estimate rate ratios (RR) and 95% confidence intervals (CIs).ResultsPredictors of the white BCMR included white/black differences in education (RR 0.95; CI 0.91\u20130.99), number of religious congregations (RR 0.87; CI 0.77\u20130.97), and number of Medicare primary care physicians (RR 1.15; CI 1.04\u20131.28). Predictors of the black rate included white/black differences in household income (RR 1.03; CI 1.01\u20131.05), number of mammography facilities (RR 1.07; CI 1.03\u20131.12), and mammogram use (RR 0.93; CI 0.89\u20130.97).ConclusionsOur ecologic analysis found that predictors of breast cancer mortality differ for the black and white rate. The results of this analysis could help inform interventions at the local level.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10552-018-1125-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1100917", 
            "issn": [
              "0957-5243", 
              "1573-7225"
            ], 
            "name": "Cancer Causes & Control", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "breast cancer mortality rates", 
          "breast cancer mortality", 
          "cancer mortality rates", 
          "cancer mortality", 
          "mortality rate", 
          "ecologic analysis", 
          "multivariable negative binomial regression model", 
          "rate ratios", 
          "primary care physicians", 
          "confidence intervals", 
          "care physicians", 
          "mammogram use", 
          "Health Statistics", 
          "ecologic study", 
          "negative binomial regression models", 
          "binomial regression models", 
          "mammography facilities", 
          "white rates", 
          "predictors", 
          "US Census Bureau", 
          "black women", 
          "mortality", 
          "black differences", 
          "regression models", 
          "black rates", 
          "household income", 
          "United States cities", 
          "large US cities", 
          "ResultsPredictors", 
          "PurposeWe", 
          "MethodsWe", 
          "physicians", 
          "women", 
          "rate", 
          "intervention", 
          "Census Bureau", 
          "differences", 
          "US cities", 
          "National Center", 
          "intervals", 
          "number", 
          "data", 
          "levels", 
          "analysis", 
          "center", 
          "study", 
          "use", 
          "education", 
          "ratio", 
          "facilities", 
          "local level", 
          "income", 
          "results", 
          "statistics", 
          "city", 
          "Bureau", 
          "model", 
          "religious congregations", 
          "available datasets", 
          "dataset", 
          "large United States cities", 
          "congregations", 
          "city-level ecologic analysis", 
          "race-specific (black and white) breast cancer mortality rates", 
          "potential city-level predictors", 
          "city-level predictors", 
          "race-specific multivariable negative binomial regression models", 
          "white BCMR", 
          "Medicare primary care physicians", 
          "States cities"
        ], 
        "name": "Predictors of breast cancer mortality among white and black women in large United States cities: an ecologic study", 
        "pagination": "149-164", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111498236"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10552-018-1125-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30656540"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10552-018-1125-x", 
          "https://app.dimensions.ai/details/publication/pub.1111498236"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_832.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10552-018-1125-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10552-018-1125-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10552-018-1125-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10552-018-1125-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10552-018-1125-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      22 PREDICATES      121 URIs      102 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10552-018-1125-x schema:about N060e067a4f824821b3cc96dbb92fef00
    2 N0de12bf3f1634b5c8c1f1dc2cfcec8fe
    3 N15ed38297c6840c4ba33e8f08568bb70
    4 N44d55c6543da4d2bb1d7c2dd40077b94
    5 N70c32908c4d5491493e0bc718e9f6936
    6 N95609aac1ba7452bb669fe125d98e00f
    7 N9b04cb9574e84276807434ca15d5615f
    8 Na23a386edbb24810a54a734b943b9f1f
    9 Na4db3575c3e54f26a91530f8efe57a26
    10 Nbbb7fe9d940f4748976cda84fbc503b9
    11 Nc5035a72df1e4a4788403d859e7cb61f
    12 Ne4f059867cf84938951d40e6a2b9ae51
    13 Ne79129561626409f9e39fc85380e1e6a
    14 Nf9b8519fc0a0439c891aecf0f496e4d9
    15 anzsrc-for:11
    16 anzsrc-for:1117
    17 schema:author N5a228b9a5cbf4d3ab8ad367fe53d5c52
    18 schema:citation sg:pub.10.1007/s10549-016-3840-x
    19 sg:pub.10.1007/s10549-016-3887-8
    20 sg:pub.10.1007/s10552-009-9419-7
    21 sg:pub.10.1007/s10552-018-1051-y
    22 sg:pub.10.1007/s10900-015-0052-y
    23 sg:pub.10.1007/s11524-013-9861-4
    24 sg:pub.10.1007/s40615-016-0300-6
    25 sg:pub.10.1038/npjbcancer.2015.13
    26 sg:pub.10.1186/1471-2407-13-208
    27 sg:pub.10.1186/1471-2458-13-1061
    28 sg:pub.10.1353/dem.0.0017
    29 schema:datePublished 2019-01-17
    30 schema:datePublishedReg 2019-01-17
    31 schema:description PurposeWe employed a city-level ecologic analysis to assess predictors of race-specific (black and white) breast cancer mortality rates.MethodsWe used data from the National Center for Health Statistics and the US Census Bureau to calculate 2010–2014 race-specific breast cancer mortality rates (BCMR) for 47 of the largest US cities. Data on potential city-level predictors (e.g., socioeconomic factors, health care resources) of race-specific BCMR were obtained from various publicly available datasets. We constructed race-specific multivariable negative binomial regression models to estimate rate ratios (RR) and 95% confidence intervals (CIs).ResultsPredictors of the white BCMR included white/black differences in education (RR 0.95; CI 0.91–0.99), number of religious congregations (RR 0.87; CI 0.77–0.97), and number of Medicare primary care physicians (RR 1.15; CI 1.04–1.28). Predictors of the black rate included white/black differences in household income (RR 1.03; CI 1.01–1.05), number of mammography facilities (RR 1.07; CI 1.03–1.12), and mammogram use (RR 0.93; CI 0.89–0.97).ConclusionsOur ecologic analysis found that predictors of breast cancer mortality differ for the black and white rate. The results of this analysis could help inform interventions at the local level.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N0345860744984d3a9feae74632643f74
    36 N2679f4884e2e4b35900ff4d44c908233
    37 sg:journal.1100917
    38 schema:keywords Bureau
    39 Census Bureau
    40 Health Statistics
    41 Medicare primary care physicians
    42 MethodsWe
    43 National Center
    44 PurposeWe
    45 ResultsPredictors
    46 States cities
    47 US Census Bureau
    48 US cities
    49 United States cities
    50 analysis
    51 available datasets
    52 binomial regression models
    53 black differences
    54 black rates
    55 black women
    56 breast cancer mortality
    57 breast cancer mortality rates
    58 cancer mortality
    59 cancer mortality rates
    60 care physicians
    61 center
    62 city
    63 city-level ecologic analysis
    64 city-level predictors
    65 confidence intervals
    66 congregations
    67 data
    68 dataset
    69 differences
    70 ecologic analysis
    71 ecologic study
    72 education
    73 facilities
    74 household income
    75 income
    76 intervals
    77 intervention
    78 large US cities
    79 large United States cities
    80 levels
    81 local level
    82 mammogram use
    83 mammography facilities
    84 model
    85 mortality
    86 mortality rate
    87 multivariable negative binomial regression model
    88 negative binomial regression models
    89 number
    90 physicians
    91 potential city-level predictors
    92 predictors
    93 primary care physicians
    94 race-specific (black and white) breast cancer mortality rates
    95 race-specific multivariable negative binomial regression models
    96 rate
    97 rate ratios
    98 ratio
    99 regression models
    100 religious congregations
    101 results
    102 statistics
    103 study
    104 use
    105 white BCMR
    106 white rates
    107 women
    108 schema:name Predictors of breast cancer mortality among white and black women in large United States cities: an ecologic study
    109 schema:pagination 149-164
    110 schema:productId N6c03aab5a30c4564b679248073c4e65b
    111 N86fc80ff47ca41c8b8194f4e63fda67e
    112 Nac226e896b274610a9ca214c5a91e56e
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111498236
    114 https://doi.org/10.1007/s10552-018-1125-x
    115 schema:sdDatePublished 2021-12-01T19:46
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher N4df1a0a14d9c4d12857ccf5a733e05d8
    118 schema:url https://doi.org/10.1007/s10552-018-1125-x
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N0345860744984d3a9feae74632643f74 schema:issueNumber 2
    123 rdf:type schema:PublicationIssue
    124 N060e067a4f824821b3cc96dbb92fef00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Breast Neoplasms
    126 rdf:type schema:DefinedTerm
    127 N0de12bf3f1634b5c8c1f1dc2cfcec8fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Cities
    129 rdf:type schema:DefinedTerm
    130 N15ed38297c6840c4ba33e8f08568bb70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name African Americans
    132 rdf:type schema:DefinedTerm
    133 N2679f4884e2e4b35900ff4d44c908233 schema:volumeNumber 30
    134 rdf:type schema:PublicationVolume
    135 N44d55c6543da4d2bb1d7c2dd40077b94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name United States
    137 rdf:type schema:DefinedTerm
    138 N4df1a0a14d9c4d12857ccf5a733e05d8 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 N5a228b9a5cbf4d3ab8ad367fe53d5c52 rdf:first sg:person.01127644605.96
    141 rdf:rest Nf004df3f108d464bb3b0b835fea0aa71
    142 N65eee9bf3b6e42e1a79adffc02d95986 rdf:first sg:person.01135657313.36
    143 rdf:rest rdf:nil
    144 N6c03aab5a30c4564b679248073c4e65b schema:name dimensions_id
    145 schema:value pub.1111498236
    146 rdf:type schema:PropertyValue
    147 N70c32908c4d5491493e0bc718e9f6936 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Mammography
    149 rdf:type schema:DefinedTerm
    150 N86fc80ff47ca41c8b8194f4e63fda67e schema:name doi
    151 schema:value 10.1007/s10552-018-1125-x
    152 rdf:type schema:PropertyValue
    153 N95609aac1ba7452bb669fe125d98e00f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Socioeconomic Factors
    155 rdf:type schema:DefinedTerm
    156 N9b04cb9574e84276807434ca15d5615f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Female
    158 rdf:type schema:DefinedTerm
    159 Na23a386edbb24810a54a734b943b9f1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Medicare
    161 rdf:type schema:DefinedTerm
    162 Na4db3575c3e54f26a91530f8efe57a26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Aged, 80 and over
    164 rdf:type schema:DefinedTerm
    165 Nac226e896b274610a9ca214c5a91e56e schema:name pubmed_id
    166 schema:value 30656540
    167 rdf:type schema:PropertyValue
    168 Nbbb7fe9d940f4748976cda84fbc503b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Adult
    170 rdf:type schema:DefinedTerm
    171 Nc5035a72df1e4a4788403d859e7cb61f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Humans
    173 rdf:type schema:DefinedTerm
    174 Ncc9212a310074cea8eab2ba1a055b0e1 rdf:first sg:person.010303441667.48
    175 rdf:rest N65eee9bf3b6e42e1a79adffc02d95986
    176 Ne4f059867cf84938951d40e6a2b9ae51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Aged
    178 rdf:type schema:DefinedTerm
    179 Ne79129561626409f9e39fc85380e1e6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name European Continental Ancestry Group
    181 rdf:type schema:DefinedTerm
    182 Nf004df3f108d464bb3b0b835fea0aa71 rdf:first sg:person.01054012340.65
    183 rdf:rest Ncc9212a310074cea8eab2ba1a055b0e1
    184 Nf9b8519fc0a0439c891aecf0f496e4d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Middle Aged
    186 rdf:type schema:DefinedTerm
    187 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    188 schema:name Medical and Health Sciences
    189 rdf:type schema:DefinedTerm
    190 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    191 schema:name Public Health and Health Services
    192 rdf:type schema:DefinedTerm
    193 sg:journal.1100917 schema:issn 0957-5243
    194 1573-7225
    195 schema:name Cancer Causes & Control
    196 schema:publisher Springer Nature
    197 rdf:type schema:Periodical
    198 sg:person.010303441667.48 schema:affiliation grid-institutes:grid.262641.5
    199 schema:familyName Lock
    200 schema:givenName Derrick
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010303441667.48
    202 rdf:type schema:Person
    203 sg:person.01054012340.65 schema:affiliation grid-institutes:grid.280893.8
    204 schema:familyName Silva
    205 schema:givenName Abigail
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054012340.65
    207 rdf:type schema:Person
    208 sg:person.01127644605.96 schema:affiliation grid-institutes:grid.415931.b
    209 schema:familyName Hunt
    210 schema:givenName Bijou R.
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127644605.96
    212 rdf:type schema:Person
    213 sg:person.01135657313.36 schema:affiliation grid-institutes:grid.427821.a
    214 schema:familyName Hurlbert
    215 schema:givenName Marc
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135657313.36
    217 rdf:type schema:Person
    218 sg:pub.10.1007/s10549-016-3840-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018418456
    219 https://doi.org/10.1007/s10549-016-3840-x
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s10549-016-3887-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006674793
    222 https://doi.org/10.1007/s10549-016-3887-8
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s10552-009-9419-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006412959
    225 https://doi.org/10.1007/s10552-009-9419-7
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s10552-018-1051-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104994311
    228 https://doi.org/10.1007/s10552-018-1051-y
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s10900-015-0052-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034947248
    231 https://doi.org/10.1007/s10900-015-0052-y
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s11524-013-9861-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033022903
    234 https://doi.org/10.1007/s11524-013-9861-4
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s40615-016-0300-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034685325
    237 https://doi.org/10.1007/s40615-016-0300-6
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/npjbcancer.2015.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036215464
    240 https://doi.org/10.1038/npjbcancer.2015.13
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1471-2407-13-208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020534598
    243 https://doi.org/10.1186/1471-2407-13-208
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/1471-2458-13-1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014894769
    246 https://doi.org/10.1186/1471-2458-13-1061
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1353/dem.0.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042281591
    249 https://doi.org/10.1353/dem.0.0017
    250 rdf:type schema:CreativeWork
    251 grid-institutes:grid.262641.5 schema:alternateName Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, 60064, North Chicago, IL, USA
    252 schema:name Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, 60064, North Chicago, IL, USA
    253 rdf:type schema:Organization
    254 grid-institutes:grid.280893.8 schema:alternateName Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, 5000 S. Fifth Avenue, 60141, Hines, IL, USA
    255 schema:name Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, 5000 S. Fifth Avenue, 60141, Hines, IL, USA
    256 Department of Public Health Sciences, Loyola University Stritch School of Medicine, 2160 S. First Avenue, 60153, Maywood, IL, USA
    257 rdf:type schema:Organization
    258 grid-institutes:grid.415931.b schema:alternateName Sinai Urban Health Institute, Sinai Health System, 1500 S. Fairfield Ave., Room K438, 60608, Chicago, IL, USA
    259 schema:name Sinai Urban Health Institute, Sinai Health System, 1500 S. Fairfield Ave., Room K438, 60608, Chicago, IL, USA
    260 rdf:type schema:Organization
    261 grid-institutes:grid.427821.a schema:alternateName Breast Cancer Research Foundation, 60 East 56th Street, 8th Floor, 10022, New York, NY, USA
    262 schema:name Breast Cancer Research Foundation, 60 East 56th Street, 8th Floor, 10022, New York, NY, USA
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...